
University of Bergen
Department of Informatics

Making a template query language

for EcmaScript

Author: Rolf Martin Glomsrud

Supervisor: Mikhail Barash

Informal advisor: Yulia Startsev

May, 2024

Abstract

Lorem ipsum dolor sit amet, his veri singulis necessitatibus ad. Nec insolens periculis ex.

Te pro purto eros error, nec alia graeci placerat cu. Hinc volutpat similique no qui, ad

labitur mentitum democritum sea. Sale inimicus te eum.

No eros nemore impedit his, per at salutandi eloquentiam, ea semper euismod meliore

sea. Mutat scaevola cotidieque cu mel. Eum an convenire tractatos, ei duo nulla molestie,

quis hendrerit et vix. In aliquam intellegam philosophia sea. At quo bonorum adipisci.

Eros labitur deleniti ius in, sonet congue ius at, pro suas meis habeo no.

Acknowledgements

Est suavitate gubergren referrentur an, ex mea dolor eloquentiam, novum ludus suscipit

in nec. Ea mea essent prompta constituam, has ut novum prodesset vulputate. Ad

noster electram pri, nec sint accusamus dissentias at. Est ad laoreet fierent invidunt, ut

per assueverit conclusionemque. An electram efficiendi mea.

Your name

Thursday 30th May, 2024

Contents

1 Introduction 1

2 Background 2

2.1 Technical Committee 39 . 2

2.1.1 ECMA-262 Proposals . 2

2.2 AST and Babel . 4

2.3 Source Code Querying . 6

2.4 Domain Specific languages . 6

2.5 Language Workbenches . 7

3 Collecting User Feedback for Syntactic Proposals 8

3.1 The core idea . 8

3.1.1 Applying a proposal . 9

3.2 Applicable proposals . 10

3.2.1 Syntactic Proposals . 10

3.2.2 Simple example of a syntactic proposal 10

3.2.3 ”Pipeline” Proposal . 11

3.2.4 ”Do Expression” . 13

3.2.5 Await to Promise . 14

3.3 Searching user code for applicable snippets 15

3.3.1 Structure of JSTQL . 15

3.3.2 How a match and transformation is performed 18

3.3.3 Transforming . 20

3.3.4 Using JSTQL . 20

3.4 Using the JSTQL with syntactic proposals 22

3.4.1 ”Pipeline” Proposal . 22

3.4.2 ”Do Expressions” Proposal . 23

3.4.3 ”Await to Promise” imaginary proposal 25

3.5 JSTQL-SH . 26

i

4 Implementation 27

4.1 Architecture of the solution . 27

4.2 Parsing JSTQL using Langium . 28

4.2.1 Langium . 29

4.3 Wildcard extraction and parsing . 32

4.4 Using Babel to parse . 36

4.5 Outline of transforming user code . 38

4.6 Matching . 39

4.6.1 Determining if AST nodes match 39

4.6.2 Matching a single Expression/Statement template 40

4.6.3 Matching multiple Statements . 43

4.7 Transforming . 45

5 Evaluation 49

5.1 Real Life source code . 49

5.1.1 Example transformations . 52

6 Related Work 55

6.1 Aspect-Oriented Programming . 55

6.2 Other source code query languages . 56

6.2.1 CodeQL . 56

6.2.2 PMD XPath . 57

6.2.3 XSL Transformations . 57

6.2.4 Jackpot . 57

6.3 JetBrains structural search . 58

6.4 Other JavaScript parsers . 59

6.5 Model-to-Model transformations . 60

7 Future Work 61

Bibliography 63

A TypeScript types of wildcard type expressions 67

ii

List of Figures

2.1 Example of source code parsed to Babel AST 5

3.1 Writing JSTQL in Visual Studio Code with extension 21

3.2 Error displayed when declaring a wildcard with no types. 21

3.3 Error displayed with usage of undeclared wildcard. 22

4.1 Tool architecture . 28

5.1 Evaluation with Next.js source code . 50

5.2 Evaluation with Three.js source code . 50

5.3 Evaluation with React source code . 51

5.4 Evaluation with Bootstrap source code 51

5.5 Evaluation with Atom source code . 51

iii

List of Tables

iv

Listings

3.1 Example of imaginary proposal declare numerical literal 11

3.2 JSTQL definition of a proposal . 17

3.3 Example of ”Pipeline” proposal definition in JSTQL 22

3.4 Definition of Do Proposal in JSTQL . 23

3.5 Definition of Await to Promise evaluation proposal in JSTQL 25

4.1 Definition of JSTQL in Langium. 30

4.2 Extracting wildcard from template. 33

4.3 Grammar of type expressions . 34

4.4 Simple definition of a Tree structure in TypeScript 36

4.5 Pseudocode of child node matching . 42

4.6 Extracting wildcard from match . 45

4.7 Traversing transform to AST and inserting user context 46

4.8 Inserting transformed matches into user code 47

A.1 TypesScript types of Type Expression AST 67

v

Chapter 1

Introduction

Intro goes here

1

Chapter 2

Background

2.1 Technical Committee 39

Technical Committee 39 is the committee which maintains ECMA-262 [26], the language

standard for ECMAScript, and other related standards. They develop this standard

following the TC39 process [22] for standard extension.

Technical Committee 39 (abbreviated as TC39) is a group within ECMA international,

whose main goal is to develop the language standard for ECMAScript (JavaScript) and

other related standards. These related standards include: ECMA-402, the internalization

API of ECMA-262, ECMA-404, the standard for JSON, ECMA-414, the ECMAScript

specification suite standard. The members of the committee are representatives from

various companies, academic institutions, and various other organizations from all across

the world interested in developing the ECMAScript language. The members are usually

people working wit JavaScript engines, tooling surrounding JavaScript, and other sections

related to the JavaScript language.

2.1.1 ECMA-262 Proposals

This section will contain what is a proposal, and how proposals are developed in TC39

for the ECMA-262 language standard.

2

A proposal in this context is a suggested change to the ECMA-262 language standard.

These additions to the standard have to solve some form of problem with the current ver-

sion of ECMAScript. Such problems can come in many forms, and can apply to any part

of the language. A problem can be, features that are not present in the language, incon-

sistent parts of the language, simplification of common patterns, etc etc. The proposal

development process is defined in the document TC39 Process.

TC39 Process

The TC39 process [22], is a process document describing how the extension ECMA-262 is

performed. A suggested change to the ECMA-262 standard is in the form of a proposal.

This process documents describes the stages a proposal has to pass through to be accepted

into the ECMA-262 standard.

Stage 0 consists if ideation. The purpose of this stage is to allow for exploration and

ideation around what part of the current version of ECMAScript can be improved, and

then define a problem space for the committee to focus.

Stage 1, is the point the committee has started taking the suggested addition and

will consider it. The are several requirements to enter this stage: A champion has to

be identified, a champion is a member TC39 who is responsible for the proposal. A

rough outline of the problem, and a general shape of a solution. There has to have been

discussion around key algorithms, abstractions and semantics of the proposal. Potential

implementation challenges and cross-cutting concerns have to have been identified. All

these described requirements have to be captured in a public repository. Once all these re-

quirements are met, a proposal is accepted into stage 1. During this stage, the committee

will work on designing a solution, and resolve any cross-cutting concerns discovered.

Stage 2, a preferred solution has been identified. Requirements for a proposal to enter

this stage: All high level APIs and syntax have to be described in the proposal document.

Illustrative examples of usage created. An initial specification text have to be created.

In this stage, the solution identified have to be refined, minor details ironed out, and

experimental implementations will be created.

Stage 2.7, the proposal is principally approved, and has to be tested and validated. To

enter this stage, the major sections of the proposal have to be complete. The specification

text is finished, and all reviewers of the specification have approved. Once a proposal

3

has entered this stage, testing and validation will be performed. This is done through

the prototype implementations created in stage 2, and all features of the proposal is

validated.

Stage 3, proposal is recommended for implementation. Once a proposal has been

sufficiently tested and verified, it is moved to stage 3. During stage 3, the proposal

is implemented in all major engines. During this stage, the proposal is tested for web

compatibility issues, or integration issues in the major JavaScript engines.

Stage 4, the proposal is completed and included in the standard.

2.2 AST and Babel

Abstract Syntax Tree

An abstract syntax tree is a tree representation of source code. Every node of the tree

represents a construct from the source code. ASTs remove syntactic details that are

present in the source code, and while maintaining the structure of the program with its

tree. Each node is set to represent elements of the programming language, some common

ones are statements, expressions, declarations and other language concepts. Every node

type represents a grammatical construct in the language the AST was built from.

ASTs are important for working with source code, they are used by almost any tool

that has to represent source code in some way to perform operations with it [38]. This is

because the structure is simpler to work with then raw text, especially when considering

tools like compilers, interpreters, or code transformation tools.

ASTs are built by language parsers. A language parser takes the raw source code of a

language, and parses the code into an AST while maintaining its structure but discarding

irrelevant information. A simple example of how JavaScript is parsed into an AST can

be seen in Figure 2.1.

4

Babel

Babel is a JavaScript toolchain, its main usage is converting ECMASCript 2015 and

newer into older versions of JavaScript. The conversion to older versions is done to

increase compatibility of JavaScript in older environments such as older browsers.

Babel has a suite of libraries used to work with JavaScript source code, each library

relies on Babels AST definition [4]. The AST specification Babel uses tries to stay as true

to the ECMAScript standard as possible [8], which has made it a recommended parser to

use for proposal transpiler implementations [23]. A simple example of how source code

parsed into an AST with Babel looks like can be seen in Figure 2.1.

1 let name = f(100);

VariableDeclaration

VariableDeclarator

Identifier: name CallExpression

Identifier: f NumericLiteral: 100

Figure 2.1: Example of source code parsed to Babel AST

Babel’s mission is to transpile newer version of JavaScript into older versions that

are more compatible with different environments. It has a rich plugin system to allow

a myriad of features to be enabled or disabled. This makes the parser very versatile to

fit different ways of working with JavaScript source code. This plugin system is built to

enable or disable several language constructs,

One of Babel’s more prominent features is @babel/parse [6] with plugins. This library

allows parsing of JavaScript experimental features. These features are usually proposals

that are under development by TC39, and the development of these plugins are a part of

the proposal deliberation process. This allows for experimentation as early as stage one of

the proposal development process. Some examples of proposals that were first supported

by Babels plugin system are ”Do Expression” [17] and ”Pipeline” [15]. These proposals

are both currently in the very early stage of development, with ”Do Expression” being

stage one, and ”Pipeline” being stage 2.

5

2.3 Source Code Querying

Source code querying is the action of searching source code to extract some information

or find specific sections of code. This is primarily done using several varying techniques,

and is a core part of many tools developers use. The primary use cases for source code

querying is code understanding, analysis, code navigation, enforcement of styles along

with others. All these are important tools developers use when writing programs, and

they all rely on some form of source code queries.

Source code querying comes in many forms, the simplest of which is text search. Since

source code is primarily text, one can apply text search techniques to perform a query,

this can be regular string search like with CTRL+F in the browser, or a more complex

approach using regular expressions with tools like grep. Both these methods cannot allow

for queries based on the structure of the code, and rely solely on its syntax. AST based

queries allow queries to be written based on both syntax and structure, and are generally

more powerful than regular text based queries. Another technique for code querying is

creating queries based on semantics of code. Recently, querying based on the semantics

of code is more feasible by using large language models to perform the queries.

Source code querying is used in many areas of software development. Some of the

more prevalent areas is in Integrated Development Environments (IDEs), as these tools

are created to write source code, and therefore rely on querying of the source code written

for many of their features. Some of these features include code navigation, static code

analysis, or complex code searching. One such example of code querying being used in

an IDE is Jetbrains structural search and replace [20], where we define queries based on

code structure to find and replace sections of our program.

2.4 Domain Specific languages

Domain specific languages are computer languages specialized to a specific domain. If

we compare a DSL to a general purpose language like Python, C++ or JavaScript, these

GPL are not designed with a specific task in mind, but have a more general feature set

to allow them to be used in a wide array of applications. What a domain is for a DSL is

not so simple to define, as there is no general way to define exactly the point in which a

DSL becomes a GPL and vice versa. This difference is defined more like a spectrum, in

which DSL is on one end and GPL is on the other [33].

6

DSL’s has some clear advantages when being applied to a specific domain compared to

GPL’s. A DSL allows for very concise and expressive code to be written that is specifically

designed for the application, in which a GPL might require specific implementations to

suit the domain. Using a DSL might result in faster development because of this expres-

siveness within the domain, this specificity to a domain might also increase correctness.

However, there are also clear disadvantages to DSL’s, the restrictiveness of a DSL might

become a hinderance if it is not well designed to the domain. DSL’s also might have a

learning curve, making the knowledge required to use them a hinderance. Developing the

DSL might also be a hinderance, as a DSL requires both knowledge of the domain and

knowledge of language design.

2.5 Language Workbenches

A language workbench is a tool created to facilitate the development of a computer

language, such as a DSL. Language workbenches also create tooling for languages defined

within them, and help with the language development process in general.

Language workbenches support generating tooling for languages, as most modern

computer languages are backed by some form of tooling. This tooling comes in the form

of language parsing, language servers for integrated development environments, along

with other tooling for using the language created within the language workbench.

A language is defined in a language workbench using a grammar definition. This gram-

mar is a formal specification of the language that describes how each language construct

is composed and the structure of the language. This allows the language workbench to

determine what is a valid sentence of the language. This grammar is used to create the

the AST of the language, which is the basis for all the tools generated by the language

workbench. Many such language workbenches exist, such as Langium [13], Xtext [29],

Jetbrains MPS, and Racket.

7

Chapter 3

Collecting User Feedback for

Syntactic Proposals

The goal for this project is to utilize users familiarity with their own code to gain early

and worthwhile user feedback on new syntactic proposals for ECMAScript.

3.1 The core idea

When a use of ECMAScript wants to suggest a change to the language, the idea of the

change has to be described in a Proposal. A proposal is a general way of describing a

change and its requirements, this is done by a language specification, motivation for the

idea, and general discussion around the proposed change. A proposal ideally also needs

backing from the community of users that use ECMAScript, this means the proposal has

to be presented to users some way. This is currently done by many channels, such as

polyfills, code examples, and as beta features of the main JavaScript engines, however,

this paper wishes to showcase proposals to users by using a different avenue.

Users of ECMAScript have a familiarity with code they themselves have written. This

means they have knowledge of how their own code works and why they might have written

it a certain way. This project aims to utilize this pre-existing knowledge to showcase new

proposals for ECMAScript. This way will allow users to focus on what the proposal

actually entails, instead of focusing on the examples written by the proposal authors.

8

Further in this chapter, we will be discussing the current version and future version

of ECMAScript. What we are referring to in this case is with set of problems a proposal

is trying to solve, if that proposal is allowed into ECMAScript as part of the language,

there will be a future way of solving said problems. The current way is the current status

quo when the proposal is not part of ECMAScript, and the future version is when the

proposal is part of ECMAScript and we are utilizing the new features of said proposal.

The program will allow the users to preview proposals way before they are part of the

language. This way the committee can get useful feedback from users of the language

earlier in the proposal process. Using the users familiarity will ideally allow for a more

efficient process developing ECMAScript.

3.1.1 Applying a proposal

The way this project will use the pre-existing knowledge a user has of their own code is

to use that code as base for showcasing a proposals features. Using the users own code as

base requires the following steps in order to automatically implement the examples that

showcase the proposal inside the context of the users own code.

The ide is to identify where the features and additions of a proposal could have

been used. This means identifying parts of the users program that use pre-existing

ECMAScript features that the proposal is interacting with and trying to solve. This will

then identify all the different places in the users program the proposal can be applied.

This step is called matching in the following chapters

Once we have matched all the parts of the program the proposal could be applied to,

the users code has to be transformed to use the proposal, this means changing the code

to use a possible future version of JavaScript. This step also includes keeping the context

and functionality of the users program the same, so variables and other context related

concepts have to be transferred over to the transformed code.

The output of the previous step is then a set of code pairs, where one a part of

the users original code, and the second is the transformed code. The transformed code

is then ideally a perfect replacement for the original user code if the proposal is part of

ECMAScript. These pairs are used as examples to present to the user, presented together

so the user can see their original code together with the transformed code. This allows

for a direct comparison and an easier time for the user to understand the proposal.

9

The steps outlined in this section require some way of defining matching and trans-

forming of code. This has to be done very precisely and accurately in order to avoid

examples that are wrong. Imprecise definition of the proposal might lead to transformed

code not being a direct replacement for the code it was based upon. For this we sug-

gest two different methods, a definition written in a custom DSL JSTQL and a definition

written in a self-hosted way only using ECMAScript as a language as definition language.

Read more about this in SECTION HERE.

3.2 Applicable proposals

A proposal for ECMAScript is a suggested change for the language, in the case of EC-

MAScript this comes in the form of an addition to the language, as ECMAScript does

not allow for breaking changes. There are many different kinds of proposals, this project

focuses exclusively on Syntactic Proposals.

3.2.1 Syntactic Proposals

A syntactic proposal, is a proposal that contains only changes to the syntax of a language.

This means, the proposal contains either no, or very limited change to functionality, and

no changes to semantics. This limits the scope of proposals this project is applicable to,

but it also focuses solely on some of the most challenging proposals where the users of

the language might have the strongest opinions.

3.2.2 Simple example of a syntactic proposal

Consider an imaginary proposal declare numerical literal. This proposal describes

adding an optional keyword for declaring numerical variables if the expression of the

declaration is a numerical literal.

This proposal will look something like this:

10

1 // Original code
2 let x = 100;
3 let b = "Some String";
4 let c = 200;
5
6 // Code after application of proposal
7 int x = 100;
8 let b = "Some String";
9 let c = 200;

Listing 3.1: Example of imaginary proposal declare numerical literal

See that in 3.1 the change is optional, and is not applied to the declaration of c, but

it is applied to the declaration of x. Since the change is optional to use, and essentially is

just syntax sugar, this proposal does not make any changes to functionality or semantics,

and can therefore be categorized as a syntactic proposal.

3.2.3 ”Pipeline” Proposal

The ”Pipeline” proposal [15] is a syntactic proposal which focuses on solving problems

related to nesting of function calls and other expressions that take an expression as an

argument.

This proposal aims to solve two problems with performing consecutive operations on a

value. In ECMAScript there are two main styles of achieving this functionality currently:

nesting calls and chaining calls, each of them come with a differing set of challenges when

used.

Nesting calls is mainly an issue related to function calls with one or more arguments.

When doing many calls in sequence the result will be a deeply nested call expression.

Using nested calls has some specific challenges related to readability. The order of

calls is from right to left, which is the opposite of the natural reading direction a lot of

the users of ECMAScript are used to day to day. This means it is difficult to switch

the reading direction when working out which call happens in which order. When using

functions with multiple arguments in the middle of the nested call, it is not intuitive to

see what call its arguments belong to. These issues are the main challenges this proposal

is trying to solve. There are currently ways to improve readability with nested calls,

as they can be simplified by using temporary variables. While this does introduce its

own set of issues, it provides some way of mitigating the readability problem. Another

11

positive side of nested calls is they do not require a specific design to be used, and a

library developer does not have to design their library around this specific call style.

1 // Deeply nested call with
↪→ single arguments

2 f1(f2(f3(f4(v))));

1 // Deeply nested call with
↪→ multi argument functions

2 f1(v5 , f2(f3(v3 , f4(v1 , v2)),
↪→ v4), v6);

Chaining solves some of these issues: indeed, as it allows for a more natural reading

direction left to right when identifying the sequence of call, arguments are naturally

grouped together with their respective function call, and it provides a way of untangling

deep nesting. However, executing consecutive operations using chaining has its own set

of challenges. To use chaining, the API of the code being called has to be designed to

allow for chaining. This is not always the case however, making use of chaining when

it has not been specifically designed for can be very difficult. There are also concepts

in JavaScript not supported when using chaining, such as arithmetic operations, literals,

await expressions, yield expressions and so on. This is because all of these concept

would ”break the chain”, and one would have to use temporary variables.

1 // Chaining calls
2 function1 ().function2 ().function3 ();
3
4 // Chaining calls with multiple arguments
5 function1(value1).function2 ().function3(value2).function4 ();

The ”Pipeline” proposal aims to combine the benefits of these two styles without the

challenges each method faces. The main benefit of the proposal is to allow for a similar

style to chaining when chaining has not been specifically designed to be applicable. The

essential idea is to use syntactic sugar to change the writing order of the calls without

influencing the API of the functions. Doing so will allow each call to come in the direction

of left to right, while still maintaining the modularity of deeply nested function calls.

The proposal introduces a pipe operator, which takes the result of an expression on

the left, and pipes it into an expression on the right. The location of where the result

is piped to is where the topic token is located. All the specifics of the exact token used

as a topic token and exactly what operator will be used as the pipe operator might be

subject to change, and is currently under discussion [16].

The code snippets below showcase the machinery of the proposal.

1 // Status quo
2 var loc =

↪→ Object.keys(grunt.config(
↪→ "uglify.all"))[0];

1 // With pipes
2 var loc =

↪→ grunt.config(’uglify.all’)
↪→ |> Object.keys (%) [0];

12

More intuitive ordering of function calls, to know exactly the order of execution.

1 // Status quo
2 const json = await

↪→ npmFetch.json(
3 npa(pkgs [0]).escapedName ,

↪→ opts);

1 // With pipes
2 const json = pkgs [0] |>

↪→ npa (%).escapedName |>
↪→ await npmFetch.json(%,
↪→ opts);

Seeing which argument is passed to which function call is is simpler when using pipes.

1 // Status quo
2 return filter(obj ,

↪→ negate(cb(predicate)),
↪→ context);

1 // With pipes
2 return cb(predicate) |>

↪→ _.negate (%) |>
↪→ _.filter(obj , %, context);

Can be used with any number of function arguments, as long as a single topic token

is used.

1 // Status quo
2 return

↪→ xf[’@@transducer/result ’](obj[methodName](bind(xf[’@@transducer/step’],
↪→ xf), acc));

1 // With pipes
2 return xf
3 |>

↪→ bind (%[’@@transducer/step’],
↪→ %)

4 |> obj[methodName](%, acc)
5 |>

↪→ xf[’@@transducer/result ’](%);

Complex call expressions are unraveled with pipes.

The pipe operator is present in many other languages such as F# [32] and Julia [12].

The main difference between the Julia and F# pipe operator compared to this proposal, is

the result of the left side expression has to be piped into a function with a single argument,

the proposal suggests a topic reference to be used in stead of requiring a function.

3.2.4 ”Do Expression”

The ”Do Expression” [17] proposal, is a proposal meant to bring a style of expression ori-

ented programming [27] to ECMAScript. Expression oriented programming is a concept

taken from functional programming which allows for combining expressions in a very free

manner, resulting in a highly malleable programming experience.

The motivation of the ”Do Expression” proposal is to allow for local scoping of a code

block that is treated as an expression. Thus, complex code requiring multiple statements

will be confined inside its own scope [26, 8.2] and the resulting value is returned from

the block implicitly as an expression, similarly to how a unnamed functions or arrow

13

functions are currently used. In order to achieve this behavior in the current stable

version of ECMAScript, one needs to use immediately invoked unnamed functions [26,

15.2] and invoke them immediately, or use an arrow function [26, 15.3].

The codeblock of a do expression has one major difference from these equivalent

functions, as it allows for implicit return of the final statement of the block, and is the

resulting value of the entire do expression. The local scoping of this feature allows for a

cleaner environment in the parent scope of the do expression. What is meant by this is

for temporary variables and other assignments used once can be enclosed inside a limited

scope within the do block. Allowing for a cleaner environment inside the parent scope

where the do block is defined.

1 // Current status quo
2 let x = () => {
3 let tmp = f();
4 return tmp + tmp + 1;
5 };

1 // With do expression
2 let x = do {
3 let tmp = f();
4 tmp + tmp + 1;
5 };

The current version of JavaScript enables the use of arrow functions with no arguments

to achieve similar behavior to ”Do Expression”. The main difference in this case, is the

final statement/expression will implicitly return it’s Completion Record [26, 6.2.4]

1 // Current status quo
2 let x = function (){
3 let tmp = f();
4 let a = g() + tmp;
5 return a - 1;
6 }();

1 // With do expression
2 let x = do {
3 let tmp = f();
4 let a = g() + tmp;
5 a - 1;
6 };

This example is very similar, as it uses an unnamed function [26, 15.2] which is invoked

immediately to produce similar behavior to the ”Do Expression” proposal.

3.2.5 Await to Promise

We discuss now an imaginary proposal that was used as a running example during the

development of this thesis. This proposal is of just a pure JavaScript transformation

example. The transformation this proposal is meant to display, is transforming a code

using await [26, 27.7.5.3], into code which uses a promise [26, 27.2].

To perform this transformation, we define an equivalent way of expressing an await

expression as a promise. This means removing await, this expression now will return

a promise, which has a function then(), this function is executed when the promise

14

resolves. We pass an arrow function as argument to then, and append each following

statement in the current scope [26, 8.2] inside the block of that arrow function. This will

result in equivalent behavior to using await.

1 // Code containing await
2 async function a(){
3 let b = 9000;
4 let something = await

↪→ asyncFunction ();
5 let c = something + 100;
6 return c + 1;
7 }

1 // Re -written using promises
2 async function a(){
3 let b = 9000;
4 return asyncFunction ()
5 .then(async (something)

↪→ => {
6 let c = something + 100;
7 return c;
8 })
9 }

Transforming using this imaginary proposal, will result in a returning the expression

present at the first await expression, with a deferred function then, that will execute

once the expression is completed. This function then takes a callback containing a

lambda function with a single argument. This argument shares a name with the initial

VariableDeclaration. This is needed because we have to transfer all statements that

occur after the original await expression into the body of the callback function. This

callback function also has to be async, in case any of the statements placed into it contains

await. This will result in equivalent behavior to the original code.

3.3 Searching user code for applicable snippets

In order to identify snippets of code in the user’s code where a proposal is applicable, we

need some way to define patterns of code to use as a query. To do this, we have designed

and implemented a domain-specific language that allows matching parts of code that is

applicable to some proposal, and transforming those parts to use the features of that

proposal.

3.3.1 Structure of JSTQL

In this section, we describe the structure of JSTQL . We describe every section of the

language, why each section is needed and what it is used for.

15

Proposal definition. JSTQL is designed to mimic the examples already provided in

proposal descriptions [22]. These examples can be seen in each of the proposals described

in Section 3.2. The idea is to allow a similar kind of notation to the examples in order

to define the transformations.

The first part of JSTQL is defining the proposal, this is done by creating a named

block containing all definitions of templates used for matching alongside their respective

transformation. This section is used to contain everything relating to a specific proposal

and is meant for easy proposal identification by tooling.

1 proposal Pipeline_Proposal {}

Case definition. Each proposal will have one or more definitions of a template for code

to identify in the users codebase, and its corresponding transformation definition. These

are grouped together in order to have a simple way of identifying the corresponding

cases of matching and transformations. This section of the proposal is defined by the

keyword case and a block that contains its related fields. A proposal definition in JSTQL

should contain at least one case definition. This allows for matching many different code

snippets and showcasing more of the proposal than a single concept the proposal has to

offer.

1 case case_name {
2
3 }

Template used for matching In order to define the template used to match, we

have another section defined by the keyword applicable to. This section will contain the

template defined using JavaScript with specific DSL keywords defined inside the template.

This template is used to identify applicable parts of the user’s code to a proposal.

1 applicable to {
2 "let a = 0;"
3 }

This applicable to template, will create matches on any VariableDeclaration that

is initialized to the value 0, and is stored in an Identifier with name a.

16

Defining the transformation In order to define the transformation that is applied to

a specific matched code snippet, the keyword transform to is used. This section is similar

to the template section, however it uses the specific DSL identifiers defined in applicable

to, in order to transfer the context of the matched user code, this allows us to keep parts

of the users code important to the original context it was written in.

1 transform to{
2 "() => {
3 let b = 100;
4 }"
5 }

This transformation definition, will change any code matched to its corresponding match-

ing definition into exactly what is defined. This means for any matches produced this

code will be inserted in its place.

Full definition of JSTQL Taking all these parts of JSTQL structure, defining a

proposal in JSTQL will look as follows.

1 proposal PROPOSAL_NAME {
2 case CASE_NAME_1 {
3 applicable to {
4 "let b = 100;"
5 }
6 transform to {
7 "() => {};"
8 }
9 }
10 case CASE_NAME_2 {
11 applicable to {
12 "console.log();"
13 }
14 transform to {
15 "console.dir();"
16 }
17 }
18 }

Listing 3.2: JSTQL definition of a proposal

This full example of JSTQL has two case sections. Each case is applied one at a time

to the user’s code. The first case will try to find any VariableDeclaration statements,

where the identifier is b, and the right side expression is a Literal with value 100.

The second case will change any empty console.log expression, into a console.dir

expression.

17

3.3.2 How a match and transformation is performed

To perform matching and transformation of the user’s code, we first have to have some

way of identifying applicable user code. These applicable code sections then have to be

transformed and inserted it back into the full user code definition.

Identifying applicable code

To identify sections of code a proposal is applicable to, we use templates, which are

snippets of JavaScript. These templates are used to identify and match applicable sections

of a users code. A matching section for a template is one that produces an exactly equal

AST structure, where each node of the AST sections has the same information contained

within it. This means that templates are matched exactly against the users code, this

does not really provide some way of querying the code and performing context based

transformations, so for that we use wildcards within the template.

Wildcards are interspliced into the template inside a block denoted by << >>. Each

wildcard starts with an identifier, which is a way of referring to that wildcard in the

definition of the transformation template later. This allows for transferring the context

of parts matched to a wildcard into the transformed output, like identifiers, parts of

statements, or even entire statements, can be transferred from the original user code

into the transformation template. A wildcard also contains a type expression. A type

expression is a way of defining exactly the types of AST nodes a wildcard will produce

a match against. These type expressions use Boolean logic together with the AST node-

types from BabelJS [3] to create a very versatile of defining exactly what nodes a wildcard

can match against.

Wildcard type expressions

Wildcard expressions are used to match AST node types based on Boolean logic. This

Boolean logic is based on comparison of Babel AST node types [4]. We do this be-

cause we need an accurate and expressive way of defining specifically what kinds of

AST nodes a wildcard can be matched against. This means an type expression can

be as simple as VariableDeclaration: this will match only against a node of type

VariableDeclaration. We also special types for Statement for matching against a

statement, and Expression for matching any expression.

18

This example will allow any CallExpression to match against this wildcard named

expr.

1 << expr: CallExpression >>

To make this more expressive, the type expressions support binary and unary op-

erators.We support the following operators, && is logical conjunction, || means logical

disjunction,! is logical negation. This makes it possible to build complex type expres-

sions, making it very expressive exactly what nodes are allowed to match against a specific

wildcard.

In the first example on line 1, we want to limit the wildcard to not match against any

nodes with type VariableDeclaration, while still allowing any other Statement. The

example on line 2 want to avoid loop specific statements. We express this by allowing any

Statement, but we negate the expression containing the types of loop specific statements.

1 << notVariableDeclaration: Statement && !VariableDeclaration >>
2 << noLoopSpecificStatements: Statement && !(BreakStatement ||

↪→ ContinueStatement) >>

The wildcards support matching subsequent sibling nodes of the code against a single

wildcard. We achieve this behavior done by using a Keene plus at the top level of the

expression. A Keene plus means one or more, so we allow for one or more matches in

order when using this token. This is useful for matching against a series of one or more

specific nodes, the matching algorithm will continue to match until the type expression

no longer evaluates to true.

In the example below, we allow the wildcard to match multiple nodes with the Keene

plus +. This example will continue to match against itself as long as the nodes are a

Statement and at the same time is not a ReturnStatement.

1 << statementsNoReturn : (Statement && !ReturnStatement)+ >>

1 let variableName = << expr1: ((CallExpression || Identifier) &&
↪→ !ReturnStatement)+ >>;

A wildcard section is defined on the right hand side of an assignment statement. This

wildcard will match against any AST node classified as a CallExpression or an Identifier.

19

3.3.3 Transforming

When matching sections of the users code has been found, we need some way of defining

how to transform those sections to showcase a proposal. This is done using the transform

to template. This template describes the general structure of the newly transformed code,

with context from the users code by using wildcards.

A transformation template defines how the matches will be transformed after applica-

ble code has been found. The transformation is a general template of the code once the

match is replaced in the original AST. However, without transferring over the context

from the match, this would be a template search and replace. Thus, in order to transfer

the context from the match, wildcards are defined in this template as well. These wild-

cards use the same block notation found in the applicable to template, however they

do not need to contain the types, as those are not needed in the transformation. The

only required field of the wildcard is the identifier defined in applicable to. This is

done in order to know which wildcard match we are taking the context from, and where

to place it in the transformation template.

Transforming a variable declaration from using let to use const.

1 // Example applicable to template
2 applicable to {
3 let <<variableName: Identifier >> = <<expr1: Expression >>;
4 }
5
6 // Example of transform to template
7 transform to {
8 const <<variableName >> = <<expr1 >>;
9 }

3.3.4 Using JSTQL

JSTQL is designed to be used at a proposal development stage, this means the users of

JSTQL will most likely be TC39 [21] delegates, or otherwise relevant stakeholders.

JSTQL is designed to closely mimic the style of the examples required in the TC39

process [22]. We chose to design it this way to specifically make this tool fit the use-

case of the committee. The idea behind this project is to gather early user feedback on

syntactic proposals, this would mean the main users of this kind of tool is the committee

themselves.

20

JSTQL is just written using text, most Domain-specific languages have some form of

tooling to make the process of using the DSL simpler and more intuitive. JSTQL has

an extension built for Visual Studio Code, see Figure 3.1, this extension supports many

common features of language servers, it supports auto completion, it will produce errors

if fields are defined wrong or are missing parameters.

Figure 3.1: Writing JSTQL in Visual Studio Code with extension

The language server included with this extension performs validation of the wildcards.

This allows verification of wildcard declarations in applicable to, see Figure 3.2. If a

wildcard is declared with no types, an error will be reported.

Figure 3.2: Error displayed when declaring a wildcard with no types.

The extension automatically uses wildcard declarations in applicable to to verify

all wildcards referenced in transform to are declared. If an undeclared wildcard is used,

an error will be reported and the name of the undeclared wildcard will be displayed, see

Figure 3.3.

21

Figure 3.3: Error displayed with usage of undeclared wildcard.

3.4 Using the JSTQL with syntactic proposals

This section contains the definitions of the proposals used to evaluate the tool created in

this thesis. These definitions do not have to cover every single case where the proposal

might be applicable, as they just have to be general enough to create some amount of

examples that will give a representative number of matches when the transformations are

applied to some relatively long user code. This is because this this tool will be used to

gather feedback from user’s on proposals during development. Because of this use case,

it does not matter that we catch every single applicable code snippet, just that we find

enough to perform a ”showcase” of the proposal to the user. The most important thing is

that the transformation is correct, as incorrect transformations will lead to bad feedback

on the proposal.

3.4.1 ”Pipeline” Proposal

The ”Pipeline” proposal is one of the proposals presented in Section 3.2. This proposal

is applicable to call expressions, which are used all across JavaScript. This proposal is

trying to solve readability when performing deeply nested function calls.

1 proposal Pipeline {
2
3 case SingleArgument {
4 applicable to {
5 "<<someFunctionIdent:Identifier ||

↪→ MemberExpression >>(<< someFunctionParam:
↪→ Expression >>);"

6 }
7
8 transform to {
9 "<<someFunctionParam >> |> <<someFunctionIdent >>(%);"
10 }
11 }
12
13 case TwoArgument{
14 applicable to {

22

15 "<<someFunctionIdent: Identifier ||
↪→ MemberExpression >>(<< someFunctionParam:
↪→ Expression >>, <<moreFunctionParam: Expression >>)"

16 }
17 transform to {
18 "<<someFunctionParam >> |> <<someFunctionIdent >>(%,

↪→ <<moreFunctionParam >>)"
19 }
20 }
21 }

Listing 3.3: Example of ”Pipeline” proposal definition in JSTQL

In the Listing 3.3, the first pair definition SingleArgument will apply to any

CallExpression with a single argument. We do not expressively write a CallExpression

inside a wildcard, as we have defined the structure of a CallExpression. The first wild-

card someFunctionIdent, has the types of Identifier, to match against single identi-

fiers, and MemberExpression, to match against functions who are members of objects,

i.e. console.log. In the transformation template, we define the structure of a function

call using the pipe operator, but the wildcards change order, so the argument passed as

argument someFunctionParam is placed on the left side of the pipe operator, and the

CallExpression is on the right, with the topic token as the argument. This case will

produce a match against all function calls with a single argument, and transform them to

use the pipe operator. The main difference of the second case TwoArgument, is it matches

against functions with exactly two arguments, and uses the first argument as the left side

of the pipe operator, while the second argument remains in the function call.

3.4.2 ”Do Expressions” Proposal

The ”Do Expressions” proposal [17] can be specified in our DSL. Due to the nature of

the proposal, it is not as applicable as the ”Pipeline” proposal, as it does not re-define

a style that is used quite as frequently as call expressions. This means the amount of

transformed code snippets this specification in JSTQL will be able to perform is expected

to be lower. This is due to the ”Do Expression” proposal introducing an entirely new

way to write expression-oriented code in JavaScript. If the user running this tool has not

used the current way of writing in an expression-oriented style in JavaScript, JSTQL is

limited in the amount of transformations it can perform. Nevertheless, if the user has

been using an expression-oriented style, JSTQL will transform parts of the code.

1 proposal DoExpression {
2 case arrowFunction {
3 applicable to {
4 "() => {
5 <<statements: (Statement && !ReturnStatement)+>>

23

6 return <<returnVal : Expression >>;
7 }
8 "
9 }
10 transform to {
11 "(do {
12 <<statements >>
13 <<returnVal >>
14 })"
15 }
16 }
17
18 case immediatelyInvokedAnonymousFunction {
19 applicable to {
20 "(function (){
21 <<statements: (Statement && !ReturnStatement)+>>
22 return <<returnVal : Expression >>;
23 })();"
24 }
25
26 transform to {
27 "(do {
28 <<statements >>
29 <<returnVal >>
30 })"
31 }
32 }
33 }

Listing 3.4: Definition of Do Proposal in JSTQL

In Listing 3.4, the specification of ”Do Expression” proposal in JSTQL can be seen.

It has two cases: the first case arrowFunction, applies to a code snippet using an arrow

function [26, 15.3] with a return value. The wildcards of this template are statements,

which is a wildcard that matches against one or more statements that are not of type

ReturnStatement, the reason we limit the one or more match is we cannot match the

final statement of the block to this wildcard, as that has to be matched against the re-

turn statement in the template. The second wildcard returnVal matches against any

expressions. The reason for extracting the expression from the return statement, is to

use it in the implicit return of the do block. In the transformation template, we re-

place the arrow function with with a do expression, this do expression has to be defined

inside parenthesis, as a free floating do expression is not allowed due to ambiguous pars-

ing against a do while() statement. We and insert the statements matched against

statements wildcard into the block of the do expression, and the final statement of the

block is the expression matched against the returnVal wildcard. This will produce an

equivalent transformation of an arrow function into a do expression. The second case

immediatelyInvokedAnonymousFunction follows the same principle as the first case,

but is applied to immediately invoked anonymous functions, and produces the exact same

output after the transformation as the first case. This is because immediately invoked

anonymous functions are equivalent to arrow functions.

24

3.4.3 ”Await to Promise” imaginary proposal

The imaginary proposal ”Await to Promise” is created to transform code snippets from

using await, to use a promise with equivalent functionality.

This proposal was created in order to evaluate the tool, as it is quite difficult to

define applicable code in this current template form. This definition is designed to create

matches in code using await, and highlight how await could be written using a promise

in stead. This actually highlights some of the issues with the current design of JSTQL

that will be described in Future Work.

1 proposal awaitToPomise{
2 case single{
3 applicable to {
4 "let <<ident:Identifier >> = await <<awaitedExpr:

↪→ Expression >>;
5 <<statements: (Statement && !ReturnStatement &&

↪→ !ContinueStatement &&! BreakStatement)+>>
6 return <<returnExpr: Expression >>
7 "
8 }
9
10 transform to{
11 "return <<awaitedExpr >>.then(async <<ident >> => {
12 <<statements >>
13 return <<returnExpr >>
14 });"
15 }
16 }
17 }

Listing 3.5: Definition of Await to Promise evaluation proposal in JSTQL

The specification of ”Await to Promise” in JSTQL is created to match asynchronous

code inside a function. It is limited to match asynchronous functions containing a single

await statement, and that await statement has to be stored in a VariableDeclaration.

The second wildcard statements, is designed to match all statements following the await

statement up to the return statement. This is done to move the statements into the

callback function of then() in the transformation. We includeReturnStatement because

we do not want to consume the return as it would then be removed from the functions

scope and into the callback function of then(). We also have to avoid matching where

there exists loop specific statements such as ContinueStatement or BreakStatement.

The transformation definition has to use an async function in .then(), as there might

be more await expressions contained within statements.

25

3.5 JSTQL-SH

In this thesis, we also created an alternative way of defining proposals and their respective

transformations, this is done using JavaScript as it’s own meta language for the defini-

tions. The reason for creating a way of defining proposals using JavaScript is, it allows

us to limit the amount of dependencies of the tool, since we no longer rely on JSTQL ,

and it allows for more exploration in the future work of this project.

JSTQL-SH is less of an actual language, and more of a program API at the moment,

it allows for defining proposals purely in JavaScript objects, which is meant to allow a

more modular way of using this idea. In JSTQL-SH you define a prelude, which is just

a list of variable declarations that contain the type expression as a string for that given

wildcard. This means we do not need to perform wildcard extraction when wanting to

parse the templates used for matching and transformation.

1 // Definition in JSTQL
2 proposal a{
3 case {
4 applicable to {
5 <<a:Expression >>
6 }
7 transform to {
8 () => <<a>>
9 }
10 }
11 }

1 // Equivalent definition in
↪→ JSTQL -SH

2 {
3 prelude: ’let a =

↪→ "Expression"’‘,
4 applicableTo: "a;",
5 transformTo: "() => a;"
6 }

26

Chapter 4

Implementation

In this chapter, the implementation of the tool utilizing the JSTQL and JSTQL-SH

will be presented. It will describe the overall architecture of the tool, the flow of data

throughout, and how the different stages of transforming user code are completed.

4.1 Architecture of the solution

The architecture of the solution described in this thesis is illustrated in Figure 4.1

In this tool, there exists two multiple ways to define a proposal, and each provide the

same functionality, they only differ in syntax and writing-method. One can either write

the definition in JSTQL , or one can use the program API with JSTQL-SH , which is

more friendly for programs to interact with.

In the architecture diagram of Figure 4.1, ellipse nodes show data passed into the

program sections, and rectangular nodes is a specific section of the program. The archi-

tecture is split into seven levels, where each level is a step of the program. The initial

step is the proposal definition, the definition can have two different forms, either it is

JSTQL code, or it can be a JavaScript object using the self hosted in JSTQL-SH . If we

use JSTQL , the second step is parsing it using Langium [13], this parses the raw source

code into an AST. If JSTQL-SH is used, we have to build the prelude, so we have to

extract the wildcard definitions from JavaScript source code. At this point the two paths

meet at the second step, which is wildcard extraction. At this step, if JSTQL was used,

the wildcards are extracted from the template. If JSTQL-SH was used extraction is not

27

needed. In both cases we parse the wildcard type expressions into an AST. The third

step is parsing the raw source code with Babel [3]. It is also at this point we parse the

users source code into an AST. The fourth step is translating the Babel AST into our

own custom tree structure for simpler traversal. Once all data is prepared, the fifth step

is matching the user’s AST against the applicable to template AST. Once all matches

have been found, we transplant the wildcard matches into the transform to template,

and insert it back into the users code in step six. We have at this point transformed the

users code, the final step seven is generating it back into source code.

2. Wildcard Extraction

1. Prelude Builder

Self-Hosted Object

1. Langium Parser

JSTQL Code

3. BabelUser source code

4. Custom Tree builder

5. Matcher

6. Transformer

7. Generator

Figure 4.1: Overview of tool architecture

4.2 Parsing JSTQL using Langium

In this section, we describe the implementation of the parser for JSTQL . We outline

the tool Langium, used as a parser-generator to create the AST used by the tool later to

perform the transformations.

28

4.2.1 Langium

Langium [13] is a language workbench [30] primarily used to create parsers and Integrated

Development Environments for domain specific languages. These kinds of parsers produce

Abstract Syntax Trees that are later used to create interpreters or other tooling. In this

project, we use Langium to generate an AST definition in the form of TypeScript objects.

These objects and their structure are used as definitions for the tool to do matching and

transformation of user code.

To generate this parser, Langium requires a definition of a grammar. A grammar is a

specification that describes syntax a valid programs. The JSTQL grammar describes the

structure of JSTQL , such as proposals, cases, applicable to blocks, and transform

to blocks. A grammar in Langium starts by describing the Model. The model is the top

entry of the grammar; this is where the description of all valid top level statements.

Contained within the Model rule, is one or more proposals. Each proposal is defined

with the rule Proposals, and starts with the keyword proposal, followed by a name, and

a code block. This rule is designed to contain every definition of a transformation related

to a specific proposal. To hold every transformation definition, a proposal definition

contains one or more cases.

The Case rule is created to contain a single transformation. Each case specification

starts with the keyword case, followed by a name for the current case, then a block

for that case’s fields. Cases are designed in this way to separate different transformation

definitions within a proposal. Each case contains a single definition used to match against

user code, and a definition used to transform a match.

The rule AplicableTo, is designed to hold a single template used for matching. It

starts with the keywords applicable and to, followed by a block designed to hold the

matching template definition. The template is defined as the terminal STRING, and is

parsed as a raw string for characters by Langium [13].

The rule TransformTo, is created to contain a single template used for transforming a

match. It starts with the keywords transform and to, followed by a block that holds the

transformation definition. This transformation definition is declared with the terminal

STRING, and is parser at a string of characters, same as the template in applicable to.

In order to define exactly what characters/tokens are legal in a specific definition,

Langium uses terminals defined using regular expressions, these allow for a very specific

29

character-set to be legal in specific keys of the AST generated by the parser generated by

Langium. In the definition of Proposal and Pair the terminal ID is used; this terminal

is limited to allow for only words and can only begin with a character of the alphabet or

an underscore. In Section the terminal STRING is used, this terminal is meant to allow

any valid JavaScript code and the custom DSL language described in 3.3.2. Both these

terminals defined allows Langium to determine exactly what characters are legal in each

location.

1 grammar Jstql
2
3 entry Model:
4 (proposals += Proposal)*;
5
6 Proposal:
7 ’proposal ’ name=ID "{"
8 (case+=Case)+
9 "}";
10
11 Case:
12 "case" name=ID "{"
13 aplTo=ApplicableTo
14 traTo=TransformTo
15 "}";
16
17 ApplicableTo:
18 "applicable" "to" "{"
19 apl_to_code=STRING
20 "}";
21 TransformTo:
22 "transform" "to" "{"
23 transform_to_code=STRING
24 "}";
25 hidden terminal WS: /\s+/;
26 terminal ID: /[_a-zA-Z][\w_]*/;
27 terminal STRING: /"[^"]*"|’[^’]*’/;

Listing 4.1: Definition of JSTQL in Langium.

With JSTQL , we are not implementing a programming language meant to be exe-

cuted. We are using Langium in order to generate an AST that will be used as a markup

language, similar to YAML, JSON or TOML [24]. The main reason for using Langium in

such an unconventional way is Langium provides support for Visual Studio Code integra-

tion, and it solves the issue of parsing the definition of each proposal manually. However,

with this grammar we cannot actually verify the wildcards placed in apl to code and

transform to code are correctly written. To do this, we have implemented several vali-

dation rules.

Langium Validator

A Langium validator allows for further checks DSL code, a validator allows for the im-

plementation of specific checks on specific parts of the grammar.

30

JSTQL does not allow empty typed wildcard definitions in applicable to blocks,

this means we cannot define a wildcard that allows any AST type to match against it.

This is not defined within the grammar, as inside the grammar the code is defined as

a STRING terminal. This means further checks have to be implemented using code. In

order to do this we have a specific Validator implemented on the Case definition of

the grammar. This means every time anything contained within a Case is updated, the

language server created with Langium will perform the validation step and report any

errors.

The validator uses Case as its entry point, as it allows for a checking of wildcards

in both applicable to and transform to, allowing for a check for whether a wildcard

identifier used in transform to exists in the definition of applicable to.

1 export class JstqlValidator {
2 validateWildcardAplTo(pair: Pair , accept: ValidationAcceptor):

↪→ void {
3 try {
4 if (validationResultAplTo.errors.length != 0) {
5 accept("error",

↪→ validationResultAplTo.errors.join("\n"), {
6 node: pair.aplTo ,
7 property: "apl_to_code",
8 });
9 }
10 if (validationResultTraTo.length != 0) {
11 accept("error", validationResultTraTo.join("\n"), {
12 node: pair.traTo ,
13 property: "transform_to_code",
14 });
15 }
16 } catch (e) {}
17 }
18 }

Using Langium as a parser

Langium is designed to automatically generate extensive tool support for the language

specified using its grammar. However, in our case we have to parse the JSTQL definition

using Langium, and then extract the Abstract syntax tree generated in order to use the

information it contains.

To use the parser generated by Langium, we created a custom function parseDSLtoAST,

which takes a string as an input (the raw JSTQL code), and outputs the pure AST using

the format described in the grammar, see Listing 3.3.2. This function is exposed as a

custom API for our tool to interface with. This also means our tool is dependent on the

31

implementation of the Langium parser to function with JSTQL . The implementation of

JSTQL-SH is entirely independent.

When interfacing with the Langium parser to get the Langium generated AST, the

exposed API function is imported into the tool, when this API is executed, the output is

on the form of the Langium Model, which follows the same form as the grammar. This

is then transformed into an internal object structure used by the tool, this structure is

called TransformRecipe, and is then passed in to perform the actual transformation.

4.3 Wildcard extraction and parsing

In order to refer to internal DSL variables defined in applicable to and transform

to blocks of the transformation, we need to extract this information from the template

definitions and pass that on to the matcher.

Why not use Langium for wildcard parsing?

Langium has support for creating a generator to output an artifact, which is some trans-

formation applied to the AST built by the Langium parser. This suits the needs of

JSTQL quite well and could be used to extract the wildcards and parse the type expres-

sions. This is the way the developers of Langium want this kind of functionality to be

implemented, however, the implementation would still be mostly the same, as the pars-

ing of the wildcards still has to be done ”manually” with a custom parser. Therefore,

we decided for this project to keep the parsing of the wildcards separate. If we were to

use Langium generators to parse the wildcards, it would make JSTQL-SH dependent on

Langium. This is not preferred as that would mean both ways of defining a proposal are

reliant of Langium. The reason for using our own extractor is to allow for an independent

way to define transformations using our tool.

Extracting wildcards from JSTQL

In order to allow the use of Babel [3], the wildcards present in the applicable to blocks

and transform to blocks have to be parsed and replaced with some valid JavaScript.

32

This is done by using a pre-parser that extracts the information from the wildcards and

inserts an Identifier in their place.

To extract the wildcards from the template, we look at each character in the template.

If a start token of a wildcard is discovered, which is denoted by <<, everything after that

until the closing token, which is denoted by >>, is then treated as an internal DSL variable

and will be stored by the tool. A variable flag is used (line 5,10 4.2), when the value

of flag is false, we know we are currently not inside a wildcard block, this allows us to

pass the character through to the variable cleanedJS (line 196 4.2). When flag is true,

we know we are currently inside a wildcard block and we collect every character of the

wildcard block into temp. Once we hit the end of the wildcard block, when we have

consumed the entirety of the wildcard, the contents of the temp variable is passed to a

tokenizer, then the tokens are parsed by a recursive descent parser (line 10-21 4.2).

Once the wildcard is parsed, and we know it is safely a valid wildcard, we insert an

identifier into the JavaScript template where the wildcard would reside. This allows for

easier identifications of wildcards when performing matching/transformation as we can

identify whether or not an Identifier in the code is the same as the identifier for a wildcard.

This however, does introduce the problem of collisions between the wildcard identifiers

inserted and identifiers present in the users code. In order to avoid this, the tool adds

at the beginning of every identifier inserted in place of a wildcard. This allows for easier

identification of if an Identifier is a wildcard, and avoids collisions where a variable in the

user code has the same name as a wildcard inserted into the template. This can be seen

on line 17 of Listing 4.2.

1 export function parseInternal(code: string): InternalParseResult {
2 for (let i = 0; i < code.length; i++) {
3 if (code[i] === "<" && code[i + 1] === "<") {
4 // From now in we are inside of the DSL custom block
5 flag = true;
6 i += 1;
7 continue;
8 }
9
10 if (flag && code[i] === ">" && code[i + 1] === ">") {
11 // We encountered a closing tag
12 flag = false;
13 try{
14 let wildcard = new WildcardParser(
15 new WildcardTokenizer(temp).tokenize ()
16).parse ();
17 cleanedJS +=

↪→ collisionAvoider(wildcard.identifier.name);
18
19 prelude.push(wildcard);
20 i += 1;
21 temp = "";
22 continue;
23 }
24 catch (e){

33

25 // We probably encountered a bitshift operator , append
↪→ temp to cleanedJS

26 }
27
28 }
29 if (flag) {
30 temp += code[i];
31 } else {
32 cleanedJS += code[i];
33 }
34 }
35 return { prelude , cleanedJS };
36 }

Listing 4.2: Extracting wildcard from template.

Parsing wildcard Once a wildcard has been extracted from definitions inside JSTQL ,

they have to be parsed into a simple AST to be used when matching against the wildcard.

This is accomplished by using a simple tokenizer and a recursive descent parser [28].

Our tokenizer takes the raw stream of input characters extracted from the wildcard

block within the template, and determines which part is what token. Due to the very

simple nature of the type expressions, no ambiguity is present with the tokens, so de-

termining what token is meant to come at what time is quite trivial. We use a switch

case on the current token, if the token is of length one we accept it and move on to the

next character. If the next character is an unexpected one it will produce an error. The

tokenizer also groups tokens with a token type, this allows for an simpler parsing of the

tokens later.

A recursive descent parser mimics the grammar of the language the parser is imple-

mented for, where we define functions for handling each of the non-terminals and ways

to determine what non terminal each of the token-types result in. The type expression

language is a very simple Boolean expression language, making parsing quite simple.

1 Wildcard:
2 Identifier ":" MultipleMatch
3
4 MultipleMatch:
5 GroupExpr "*"
6 | TypeExpr
7
8 TypeExpr:
9 BinaryExpr
10 | UnaryExpr
11 | PrimitiveExpr
12
13 BinaryExpr:
14 TypeExpr { Operator TypeExpr }*
15
16 UnaryExpr:
17 {UnaryOperator }? TypeExpr
18

34

19 PrimitiveExpr:
20 GroupExpr | Identifier
21
22 GroupExpr:
23 "(" TypeExpr ")"

Listing 4.3: Grammar of type expressions

The grammar of the type expressions used by the wildcards can be seen in Figure 4.3,

the grammar is written in something similar to Extended Backus-Naur form, where we

define the terminals and non-terminals in a way that makes the entire grammar parseable

by the recursive descent parser.

Our recursive descent parser produces an AST, which is later used to determine when

a wildcard can be matched against a specific AST node, the full definition of this AST can

be seen in Appendix A.1. We use this AST by traversing it using a [37]visitor pattern and

comparing each Identifier against the specific AST node we are currently comparing

with, and evaluating all subsequent expressions and producing a boolean value, if this

value is true, the node is matched against the wildcard, if not then we do not have a

match.

Extracting wildcards from JSTQL-SH The self-hosted version JSTQL-SH also re-

quires some form of pre-parsing in order to prepare the internal DSL environment. This

is relatively minor and only parsing directly with no insertion compared to JSTQL .

In order to use JavaScript as the meta language, we define a prelude on the object

used to define the transformation case. This prelude is required to consist of several

Variable declaration statements, where the variable names are used as the internal

DSL variables and right side expressions are strings that contain the type expression used

to determine a match for that specific wildcard.

We use Babel to generate the AST of the prelude definition, this allows us to get a

JavaScript object structure. Since the structure is very strictly defined, we can expect

every stmt of stmts to be a variable declaration, otherwise throw an error for invalid

prelude. Then the string value of each of the variable declarations is passed to the same

parser used for JSTQL wildcards.

The reason this is preferred is it allows us to avoid having to extract the wildcards

and inserting an Identifier.

35

4.4 Using Babel to parse

Allowing the tool to perform transformations of code requires the generation of an Ab-

stract Syntax Tree from the users code, applicable to and transform to. This means

parsing JavaScript into an AST, in order to do this we use Babel [3].

The most important reason for choosing to use Babel for the purpose of generating the

AST’s used for transformation is due to the JavaScript community surrounding Babel.

As this tool is dealing with proposals before they are part of JavaScript, a parser that

supports early proposals for JavaScript is required. Babel works closely with TC39 to

support experimental syntax [7] through its plugin system, which allows the parsing of

code not yet part of the language.

Custom Tree Structure

Performing matching and transformation on each of the sections inside a case definition,

they have to be parsed into and AST in order to allow the tool to match and trans-

form accordingly, for this we use Babel [3]. However, Babels AST structure does not

suit traversing multiple trees at the same time, this is a requirement for matching and

transforming. Therefore we take the AST and transform it into a simple custom tree

structure to allow for simple traversal of the tree.

As can be seen in Figure 4.4 we use a recursive definition of a TreeNode where a

nodes parent either exists or is null (it is top of tree), and a node can have any number

of children elements. This definition allows for simple traversal both up and down the

tree. Which means traversing two trees at the same time can be done in the matcher and

transformer section of the tool.

1 export class TreeNode <T> {
2 public parent: TreeNode <T> | null;
3 public element: T;
4 public children: TreeNode <T>[] = [];
5
6 constructor(parent: TreeNode <T> | null , element: T) {
7 this.parent = parent;
8 this.element = element;
9 if (this.parent) this.parent.children.push(this);
10 }
11 }

Listing 4.4: Simple definition of a Tree structure in TypeScript

36

Placing the AST generated by Babel into this structure means utilizing the li-

brary [9]Babel Traverse. Babel Traverse uses the visitor pattern [37] to perform traversal

of the AST. While this method does not suit traversing multiple trees at the same time,

it allows for very simple traversal of the tree to place it into our simple tree structure.

To place the AST into our tree structure, we use @babel/traverse [9] to visit each

node of the AST in a depth first manner, the idea is we implement a visitor for each of

the nodes in the AST and when a specific node is encountered, the corresponding visitor

of that node is used to visit it. When transferring the AST into our simple tree structure

we simply have to use the same visitor for every kind of AST node, and place that node

into the tree.

Visiting a node using the enter() function means we went from the parent to that

child node, and it should be added as a child node of the parent. The node is automatically

added to its parent list of children nodes from the constructor of TreeNode. Whenever

leaving a node the function exit() is called, this means we are moving back up into the

tree, and we have to update what node was the last in order to generate the correct tree

structure.

1 traverse(ast , {
2 enter(path: any) {
3 let node: TreeNode <t.Node > = new TreeNode <t.Node >(
4 last ,
5 path.node as t.Node
6);
7
8 if (last == null) {
9 first = node;
10 }
11 last = node;
12 },
13 exit(path: any) {
14 if (last && last?. element ?.type != "Program") {
15 last = last.parent;
16 }
17 },
18 });
19 if (first != null) {
20 return first;
21 }

One important nuance of the way we place the nodes into the tree, is we still have

the same underlying data structure from Babel. Because of this, the nodes can still be

used with Babels APIs, and we can still access every field of each node. Transforming it

into a tree only creates an easy way to traverse up and down the tree by references. We

perform no copying.

37

4.5 Outline of transforming user code

Below is an outline of every major step performed, and how data is passed through the

program.

Algorithm 1 Outline of steps of algorithm

1: CA,CT,W ← extractWildcards()
2: A, T ← babel.parse(CA,CT) ▷ Parse templates
3: C ← babel.parse() ▷ Parse user code
4: AT, TT,CT ← Tree(A, T, C) ▷ Build the tree structure from Babel AST
5: if AT.length > 1 then ▷ Decide which matcher to use
6: M ← multiMatcher(CT,AT,W)
7: else
8: M ← singleMatcher(CT,AT,W)
9: end if
10: TMap← Map()
11: for each m in M do ▷ Build transformation templates
12: TMap.insert ← buildTransform(m, TT , W);
13: end for
14: for traverse(C) do
15: if TMap.has(c) then
16: C.replaceMany(TMap.get(c));
17: end if
18: end for
19: return babel.generate(C);

Each part of Algorithm 1 is a step in the full algorithm for transforming user code

based on a proposal specification in our tool. The initial step (line 1) is extraction of

wildcards from the template definition. This step also parses the wildcard type expres-

sions into an AST. The second step (lines 2,3) is to parse all templates into an AST with

@babel/parser [6]. Once we have parsed all code into ASTs, we decide which matching

algorithm to use (line 5) based on the applicable to template. These algorithms will

find all matching sections of the user AST to the template. We then build the transforma-

tion templates(lines 11-13), and insert the sections from the use code that was matched

with a wildcard. These transformations are stored in a Map(line 10). Once all transforma-

tions are prepared, we traverse the user AST (line 14), and insert the transformations if

the current node traversed is in the Map (line 16). The final step, is to generate JavaScript

from the transformed AST (line 19).

38

4.6 Matching

This section discusses how we find matches in the users code, this is the step described

in lines 5-10 of Listing 1. Firstly, we will discuss how individual nodes are compared,

then how the two traversal algorithms are implemented, and how matches are discovered

using these algorithms.

4.6.1 Determining if AST nodes match

The initial problem we have to overcome is a way of comparing AST nodes from the tem-

plate to AST nodes from the user code. This step also has to take into account comparing

against wildcards and pass that information back to the AST matching algorithms.

When comparing two AST nodes in this tool, we use the function checkCodeNode,

which will give the following values based on what kind of match these two nodes produce.

NoMatch The nodes do not match.

Matched The nodes are a match, and the node of applicable to is not a wildcard.

MatchedWithWildcard The node of the user AST produced a match against a wild-

card.

MatchedWithPlussedWildcard The node of the user AST produced a match against

a wildcard that can match one or more nodes against itself.

When we are comparing two AST nodes, we have to perform an equality check. Due

to this being a structural matching search, we can get away with just performing some

preliminary checks, such as that names of identifiers, otherwise it is sufficient to just

perform an equality check of the types of the nodes we are currently trying to match. If

the types are the same, they can be validly matched against each other. This is sufficient

because we are currently trying to determine if a single node can be a match, and not

the entire template structure is a match. Therefore false positives that are not equivalent

are highly unlikely due to the fact the entire structure has to be a false positive match.

There is a special case when comparing two nodes, namely when encountering a wild-

card. To know if we have encountered a wildcard, the current AST node of applicable

to will be either an Identifier or a ExpressionStatement where the expression is an

Identifier. The reason it might be an ExpressionStatement is due to the wildcard

39

extraction step, where we replace the wildcard with an identifier of the same name. Due

to this replacement, we might place an identifier as a statement, the identifier will then

be wrapped inside an ExpressionStatement AST node. If the node of applicable to

is of either of these types, we have to check if the name of the identifier is the same as

a wildcard. If it is, we have to compare the type of the user AST node against the type

expression of the wildcard.

1 if((aplToNode.type === "ExpressionStatement" &&
2 aplToNode.expression.type === "Identifier") ||
3 aplToNode.type === "Identifier"){
4
5 // Check if aplToNode is a wildcard
6 }

When comparing an AST node type against a wildcard type expression, we pass the

node type into a function WildcardEvaluator. This evaluator will traverse through the

AST of the wildcard type expression. Every leaf of the tree is equality checked against

the type, and the resulting boolean value is returned. Then we evaluate the expression,

passing the values through the visitors until we have evaluated the entire expression,

and have a result. If the result of the evaluator is false, we return NoMatch. If the

result of the evaluation is true, we know we can match the user’s AST node against the

wildcard. If the wildcard type expression contains a Kleene plus, the comparison returns

MatchedWithPlussedWildcard, if not, we return MatchedWithWildcard.

4.6.2 Matching a single Expression/Statement template

In this section, we will discuss how matching is performed when the applicable to tem-

plate is a single expression/statement. A very complex matching template with many

statements might result in a lower chance of finding matches in the users code. There-

fore using simple, single root node matching templates provide the highest possibility of

discovering a match within the users code. This section will cover line 11 of Listing 1.

Determining if we are currently matching with a template that is only a single expres-

sion/statement, we have to verify that the program body of the template has the length

of one, if it does we can use the single length traversal algorithm.

There is a special case for if the template is a single expression, as the first node of

the AST generated by @babel/generate [5] will be of type ExpressionStatement, the

reason for this is Babel will treat free floating expressions as a statement. This will miss

many applicable parts of the users code, because expressions within other statements are

40

not wrapped in an ExpressionStatement. This will give a template that is incompatible

with a lot of otherwise applicable expressions. This means the statement has to be

removed, and the search has to be done with the expression as the top node of the

template. If the node in the body of the template is a statement, no removal has to be

done, as a statement can be used directly.

Discovering Matches Recursively The matcher used against single expression/s-

tatement templates is based Depth-First Search to traverse the trees. The algorithm can

be split into two steps. The initial step is to check if we are currently at the root of the

applicable to AST, the second is to try to match the current nodes, and start a search

on each of their child nodes.

It is important we try to match against the template at all levels of the code AST,

this is done by starting a new search one every child node of the code AST if the current

node of the template AST is the root node. This ensures we have tried to perform a

match at any level of the tree. This also ensures we have no partial matches, as we store

it only if it returns a match when being called with the root node of applicable to.

1 if(aplTo.element === this.aplToRoot){
2 // Start a search from root of aplTo on all child nodes
3 for(let codeChild of code.children){
4 let childMatch = singleMatcher(codeChild , aplTo);
5
6 // If it is a match , we know it is a full match and store it.
7 if(childMatch){
8 this.matches.push(childMatch);
9 }
10 }
11 }

We can now determine if we are currently exploring a match. This means the current

code AST node is checked against the current node of applicable to AST. Based on

what kind of result the comparison between these two nodes give, we have perform

different steps.

NoMatch: If a comparison between the nodes return a NoMatch result, we perform an

early return of undefined, as no match was discovered. We can safely discard this

search, because we have started a search at all levels of the code AST.

Matched: The current code node matches against the current node of the template, and

we have to perform a search on each of the child nodes.

41

MatchedWithWildcard: When a comparison results in a wildcard match, we pair the

current code node and the template wildcard, and do an early return. We can do

this because if a wildcard matches, the nodes of the children does not matter and

will be placed into the transformation.

MatchedWithPlussedWildcard: this is a special case for a wildcard match. When

a match against a wildcard that has the Kleene plus tied to it we also perform an

early return. This result means some special traversal has to be done to the current

nodes siblings, this is described below.

A comparison result of Matched means the two nodes match, but the applicable

to node is not a wildcard. With this case, we perform a search on each child nodes of

applicable to AST and the user AST. This is performed in order, meaning the n-th

child node of applicable to is checked against the n-th child node of the user AST.

When checking the child nodes, we have to check for a special case when the com-

parison of the child nodes result in MatchedWithPlussedWildcard. If this result is en-

countered, we have to continue matching the same applicable to node against each

subsequent sibling node of the code node. This is because, a wildcard with a Keene plus

can match against multiple sibling nodes. This behavior can bee seen in line 17-31 of

Listing 4.5.

If all child nodes did not give the result of NoMatch, we have successfully matched

every node of the applicable to AST. This does not yet mean we have a match, as

there might be remaining nodes in the child node of the code AST. To check for this, we

check whether or not codeI is equal to the length of code.children. If it is unequal, we

have not matched all child nodes of the code AST and have to return NoMatch. This can

be seen on lines 37-39 of Listing 4.5.

1 let codeI = 0;
2 let aplToI = 0;
3
4 while (aplToI < aplTo.children.length && codeI < code.children.length){
5 let [pairedChild , childResult] =

↪→ singleMatcher(code.children[codeI], aplTo.children[aplToI]);
6
7 // If a child does not match , the entire match is discarded
8 if(childResult === NoMatch){
9 return [undefined , NoMatch];
10 }
11
12 // Add the match to the current Paired Tree structure
13 pairedChild.parent = currentPair;
14 currentPair.children.push(pairedChild);
15
16 // Special case for Keene plus wildcard match
17 if(childResult === MatchedWithPlussedWildcard){
18 codeI += 1;

42

19 while(codeI < code.children.length){
20 let [nextChild , plusChildResult] =

↪→ singleMatcher(code.children[codeI],
↪→ aplTo.children[aplToI]);

21
22 if(plusChildResult !== MatchedWithPlussedWildcard){
23 i -= 1;
24 break;
25 }
26
27 pairedChild.element.codeNode.push (... nextChild.element.codeNode);
28
29 codeI += 1;
30 }
31 }
32
33 codeI += 1;
34 aplToi += 1;
35 }
36
37 if(codeI !== code.children.length){
38 return [undefined , NoMatch]
39 }
40
41 return [currentPair , Match];

Listing 4.5: Pseudocode of child node matching

4.6.3 Matching multiple Statements

Using multiple statements in the template of applicable to means the tree of

applicable to as multiple root nodes, to perform a match with this kind of template,

we use a sliding window [31] with size equal to the amount statements in the template.

This window is applied at every BlockStatement and Program of the code AST, as that

is the only placement statements can reside in JavaScript [26, 14].

The initial step of this algorithm is to search through the AST for ast nodes that

contain a list of Statements. Searching the tree is done by Depth-First search, at every

level of the AST, we check the type of the node. Once a node of type BlockStatement

or Program is discovered, we start the trying to match the statements.

1 multiStatementMatcher(code , aplTo) {
2 if (
3 code.element.type === "Program" ||
4 code.element.type === "BlockStatement"
5) {
6 matchMultiHead(code.children , aplTo.children);
7 }
8
9 for (let code_child of code.children) {
10 multiStatementMatcher(code_child , aplTo);
11 }
12 }

43

matchMultiHead uses a sliding window [31]. The sliding window will try to match

every statement of the code AST against its corresponding statement in the applicable

to AST. For every statement, we perform a DFS recursion algorithm is applied, similar

to algorithm used in Section 4.6.2, however this search is not applied to all levels, and if

it matches it has to match fully and immediately. If a match is not found, the current

iteration of the sliding window is discarded and we move on to the next iteration by

moving the window one further.

One important case here is we might not know the width of the sliding window, this

is due to wildcards using the Keene plus, as they can match one or more nodes against

the wildcard. These wildcards might match against (Statement)+. Therefore, we use a

similar technique to the one described in Section 4.6.2, where we have two pointers and

match each statement depending on each pointer.

Output of the matcher

The matches discovered have to be stored such that we can easily find all the nodes

that were matched against wildcards and transfer them into the transformation later. To

make this simpler, we make use an object PairedNodes. This object allows us to easily

find exactly what nodes were matched against each other. The matcher will place this

object into the same tree structure described in 4.4. This means the result of running

the matcher on the user code is a list of TreeNode<PairedNode>.

1 interface PairedNode{
2 codeNode: t.Node[],
3 aplToNode: t.Node
4 }

Since a match might be multiple statements, we use an interface Match, that contains

separate tree structures of PairedNodes. This allows storage of a match with multiple

root nodes.

1 export interface Match {
2 // Every matching Statement in order with each pair
3 statements: TreeNode <PairedNodes >[];
4 }

44

4.7 Transforming

To perform the transformation and replacement on each of the matches, we take the

resulting list of matches, the template from the transform to section of the current case

of the proposal, and the Babel AST [4] version of original code. All the transformations

are then applied to the code and we use @babel/generate [5] to generate JavaScript

code from the transformed AST.

An important discovery is to ensure we transform the leafs of the AST first, this is

because if the transformation was applied from top to bottom, it might remove transfor-

mations done using a previous match. This means if we transform from top to bottom

on the tree, we might end up with a(b) |> c(%) in stead of b |> a(%) |> c(%) in the

case of the pipeline proposal. This is quite easily solved in our case, as the matcher looks

for matches from the top of the tree to the bottom of the tree, the matches it discovers

are always in that order. Therefore when transforming, all that has to be done is reverse

the list of matches, to get the ones closest to the leaves of the tree first.

Building the transformation

Before we can start to insert the transform to section into the user’s code AST. We

have to insert all nodes matched against a wildcard in applicable to into their reference

locations.

The first step to achieve this is to extract the wildcards from the match tree. This is

done by recursively searching the match tree for an Identifier or ExpressionStatement

containing an Identifier. To do this, we have a function extractWildcardPairs, which

takes a single match, and extracts all wildcards and places them into a Map<string,

t.Node[]>. Where the key of the map is the identifier used for the wildcard, and the

value is the AST nodes the wildcard was matched against in the users code.

1 function extractWildcardPairs(match: Match): Map <string , t.Node[]> {
2 let map: Map <string , t.Node[]> = new Map();
3
4 function recursiveSearch(node: TreeNode <PairedNodes >) {
5 let name: null | string = null;
6 if (node.element.aplToNode.type === "Identifier") {
7 name = node.element.aplToNode.name;
8 } else if (
9 // Node is ExpressionStatement with Identifier
10) {
11 name = node.element.aplToNode.expression.name;
12 }
13

45

14 if (name) {
15 // Store in the map
16 map.set(name , node.element.codeNode);
17 }
18 // Recursively search the child nodes
19 for (let child of node.children) {
20 recursiveSearch(child);
21 }
22 }
23 // Start the initial search
24 for (let stmt of match.statements) {
25 recursiveSearch(stmt);
26 }
27 return map;
28 }

Listing 4.6: Extracting wildcard from match

Once the full map of all wildcards has been built, we have to insert the wildcards

into the Babel AST of the transform to template. To do this, we have to traverse the

template and insert the matched nodes of the user’s code. We use @babel/traverse [9]

to traverse the AST, as this provides us with a powerful API for modifying the AST.

@babel/traverse allows us to define visitors, that are executed when traversing spe-

cific types of AST nodes. For this, we define a visitor for Identifier, and a visitor

for ExpressionStatement. These visitors will do exactly the same, however for the

ExpressionStatement, we have to check if the expression is an identifier.

When we visit a node that might be a wildcard, we check if that nodes name is in the

map of wildcards built in Listing 4.6. If the name of the identifier is a key in the wildcard,

we get the value for that key, and perform a node replacement. Where we replace the

identifier with the node from the user’s code that was matched against that wildcard.

See Listing 4.7

1 traverse(transformTo , {
2 Identifier: (path) => {
3 if (wildcardMatches.has(path.node.name)) {
4 let toReplaceWith =

↪→ wildcardMatches.get(path.node.name);
5 if (toReplaceWith) {
6 path.replaceWithMultiple(toReplaceWith);
7 }
8 }
9 },
10 ExpressionStatement: (path) => {
11 if (path.node.expression.type === "Identifier") {
12 let name = path.node.expression.name;
13 if (wildcardMatches.has(name)) {
14 let toReplaceWith = wildcardMatches.get(name);
15 if (toReplaceWith) {
16 path.replaceWithMultiple(toReplaceWith);
17 }
18 }
19 }
20 },
21 });

Listing 4.7: Traversing transform to AST and inserting user context

46

Due to some wildcards allowing matching of multiple sibling nodes, we have to use

replaceWithMultiple when performing the replacement. This can be seen on line 6 and

16 of Listing 4.7.

Inserting the template into the AST

We have now created the transform to template with the user’s context. This has to

be inserted into the full AST definition of the users code. To do this we have to locate

exactly where in the user AST this match originated. We can perform an equality check

on the top noe of the user node stored in the match. To do this efficiently, we perform

this check by using this top node as the key to a Map, so if a node in the user AST exists

in that map, we know it was matched.

1 transformedTransformTo.set(
2 match.statements [0]. element.codeNode [0],
3 [
4 transformMatchFaster(wildcardMatches , traToWithWildcards),
5 match ,
6]
7);

To traverse the user AST, we use @babel/traverse [9]. In this case we cannot use

a specific visitor, and therefore we use a generic visitor that applies to every node of the

AST. If the current node we are visiting is a key to the map of transformations, we know

we have to insert the transformed code. This is done similarly to before where we use

replaceWithMultiple.

Some matches have multiple root nodes. This is likely when matching was done with

multiple statements as top nodes. This means we have to remove n-1 following sibling

nodes. Removal of these sibling nodes can be seen on lines 12-15 of Listing 4.8.

1 traverse(codeAST , {
2 enter(path) {
3 if (transformedTransformTo.has(path.node)) {
4 let [traToWithWildcards , match] =
5 transformedTransformTo.get(path.node) as [
6 t.File ,
7 Match
8];
9 path.replaceWithMultiple(
10 traToWithWildcards.program.body);
11
12 let siblings = path.getAllNextSiblings ();
13
14 // For multi line applicable to
15 for (let i = 0; i < match.statements.length - 1; i++) {
16 siblings[i]. remove ();
17 }
18

47

19 // When we have matched top statements with +, we
↪→ might have to remove more siblings

20 for (let matchStmt of match.statements) {
21 for (let codeStmt of matchStmt.element
22 .codeNode) {
23 let siblingnodes = siblings.map((a) => a.node);
24 if (siblingnodes.includes(codeStmt)) {
25 let index = siblingnodes.indexOf(codeStmt);
26 siblings[index]. remove ();
27 }
28 }
29 }
30 }
31 },
32 });

Listing 4.8: Inserting transformed matches into user code

There is a special case when a wildcard with a Keene plus, allowing the match of

multiple siblings, means we might have more siblings to remove. In this case, it is not so

simple to know exactly how many we have to remove. Therefore, we have to iterate over

all statements of the match, and check if that statement is still a sibling of the current

one being replace. This behavior can be seen on lines 20-29 of Listing 4.8.

After one full traversal of the user AST. All matches found have been replaced with

their respective transformation. All that remains is generating JavaScript from the trans-

formed AST.

Generating source code from transformed AST

To generate JavaScript from the transformed AST created by this tool, we use a

JavaScript library titled [5]babel/generator. This library is specifically designed for use

with Babel to generate JavaScript from a Babel AST. The transformed AST definition of

the users code is transformed, while being careful to apply all Babel plugins the current

proposal might require.

48

Chapter 5

Evaluation

In this chapter we will discuss how we evaluated JSTQL and its related tools. This

chapter will include some testing of the tool on demo code snippets, as well as running

each of the proposals discussed in this thesis on some large scale JavaScript projects.

5.1 Real Life source code

In order to perform actual large scale trial of this program, we have collected some github

projects containing many or large JavaScript files. Every JS file within the project is then

passed through the entire tool, and we will evaluate it based upon the amount of matches

discovered, as well as manual checking that the transformation resulted in correct code

on the matches.

Each case study was evaluated by running this tool on every .js file in the repository,

then collecting the number of matches found in total and how many files were successfully

searched. Evaluating if the transformation was correct is done by manually sampling

output files, and verifying that it passes through Babel Generate [5] without error.

”Pipeline” [15] is very applicable to most files, as the concept it touches (fucntion

calls) is widely used all across JavaScript. This is by far the best result, and it found

matches in almost all files that Babel [6] managed to parse.

The Do proposal [17] is expected to not find as many matches, as code that has not

been written in expression-oriented programming style will not produce many matches.

49

However, this also highlights how impactful this proposal is to previously written code

compared to ”Pipeline”.

Await to promise also has an expected number of matches, but this evaluation proposal

is not meant to be real life representative. As it is limited to functions containing only a

single await statement and that statement has to be a VariableDeclaration.

Next.js [14] is one of the largest projects on the web. It is used with React [18] to

enable feature such as server-sire rendering and static site generation.

Proposal Matches found Files with matches Files processed

”Pipeline” 242079 1912 3340
”Do” expression 480 111 3340
Await to Promise 143 75 3340

Figure 5.1: Evaluation with Next.js source code

Three.js [25] is a library for 3D rendering in JavaScript. It is written purely in

JavaScript and uses GPU for 3D calculations. It being a popular JavaScript library,

and being written in mostly pure JavaScript makes it a good case study for our tool. It

currently sits at over 1 million downloads weekly.

Proposal Matches found Files with matches Files searched

Pipeline 84803 1117 1384
”Do” expression 277 55 1384
Await to Promise 13 7 1384

Figure 5.2: Evaluation with Three.js source code

React [18] is a graphical user interface library for JavaScript, it facilitates the creation

of user interfaces for both web and native platforms. React is based upon splitting a user

interface into components for simple development. It is currently one of the most popular

libraries for creating web apps and has over 223000 stars on Github.

50

Proposal Matches found Files with matches Files searched

”Pipeline” 16353 1266 2051
”Do” expression 79 60 2051
Await to Promise 30 13 2051

Figure 5.3: Evaluation with React source code

Bootstrap [10] is a front-end framework used for creating responsive and mobile-first

websites, it comes with a variety of built-in components, as well as a built in styling.

This styling is also customizable using CSS. This library is a good evaluation point for

this thesis as it is written in pure JavaScript and is used by millions of developers.

Proposal Matches found Files with matches Files searched

””Pipeline” 13794 109 115
”Do” expression 13 8 115
Await to Promise 0 0 115

Figure 5.4: Evaluation with Bootstrap source code

Atom [2] is a text editor made in JavaScript using the Electron framework. It was

created to give a very minimal and modular text editor. It was bought by Microsoft, and

later discontinued in favor for Visual Studio Code.

Proposal Matches found Files with matches Files searched

”Pipeline” 40606 361 401
”Do” expression 46 26 401
Await to Promise 12 7 401

Figure 5.5: Evaluation with Atom source code

51

5.1.1 Example transformations

Highlights of transformations from evaluation

1 tracks.push(parseKeyframeTrack(jsonTracks[i]).scale(frameTime)
↪→);

1 frameTime
2 |> (jsonTracks[i] |> parseKeyframeTrack (%)).scale (%)
3 |> tracks.push (%);

Transformation taken from three.js/src/animation/AnimationClip.js

1 const logger = createLogger ({
2 storagePath: join(__dirname , ’.progress -estimator ’),
3 });

1 const logger = {
2 storagePath: __dirname |> join(%, ’.progress -estimator ’)
3 } |> createLogger (%);

”Pipeline” transformation, taken from react/scripts/devtools/utils.js

1 if (isElement(content)) {
2 this._putElementInTemplate(getElement(content), templateElement)
3 return
4 }

1 if (content |> isElement (%)) {
2 content |> getElement (%) |> this._putElementInTemplate (%,

↪→ templateElement);
3 return;
4 }

”Pipeline” transformation, taken from bootstrap/js/src/util/template-factory.js

1 for (const file of typeFiles) {
2 const content = await fs.readFile(join(styledJsxPath , file), ’utf8’)
3 await fs.writeFile(join(typesDir , file), content)
4 }

1 for (const file of typeFiles) {
2 const content = await (styledJsxPath |> join(%, file) |>

↪→ fs.readFile(%, ’utf8’));
3 await (typesDir |> join(%, file) |> fs.writeFile (%, content));
4 }

”Pipeline” transformation, taken from next.js/packages/next/taskfile.js

52

1 if (repo && repo.onDidDestroy) {
2 repo.onDidDestroy (() =>
3 this.repositoryPromisesByPath.delete(pathForDirectory)
4);
5 }

1 if (repo && repo.onDidDestroy) {
2 (() => pathForDirectory |>

↪→ this.repositoryPromisesByPath.delete (%)) |>
↪→ repo.onDidDestroy (%);

3 }

”Pipeline” transformation, taken from atom/src/project.js

1 await check(async () => {
2 const html = await browser.eval(’document.documentElement.innerHTML ’)
3 return html.match (/ iframe /) ? ’fail’ : ’success ’
4 }, /success /)

1 await check(do {
2 const html = await browser.eval(’document.documentElement.innerHTML ’);
3 html.match(/ iframe /) ? ’fail’ : ’success ’
4 }, /success /);

”Do expression” transformation, taken from next.js/test/integration/typescript-hmr/index.test.js

53

1 async function getCurrentRules () {
2 const res = await fetch(
3 ‘https://api.github.com/repos/vercel/next.js/branches/canary/protection ‘,
4 {
5 headers: {
6 Accept: ’application/vnd.github+json’,
7 Authorization: ‘Bearer ${authToken}‘,
8 ’X-GitHub -Api -Version ’: ’2022 -11 -28’,
9 },
10 }
11)
12
13 if (!res.ok) {
14 throw new Error(
15 ‘Failed to check for rule ${res.status} ${await res.text()}‘
16)
17 }
18 const data = await res.json()
19
20 return {
21 // Massive JS Object
22 }
23 }

1 async function getCurrentRules () {
2 return

↪→ fetch(‘https://api.github.com/repos/vercel/next.js/branches/canary/protection ‘,
↪→ {

3 headers: {
4 Accept: ’application/vnd.github+json’,
5 Authorization: ‘Bearer ${authToken}‘,
6 ’X-GitHub -Api -Version ’: ’2022 -11 -28’
7 }
8 }).then(async res => {
9 if (!res.ok) {
10 throw new Error(‘Failed to check for rule ${res.status} ${await

↪→ res.text()}‘);
11 }
12 const data = await res.json();
13 return {
14 // Massive JS object
15 };
16 });
17 }

”Await to Promise” transformation, taken from next.js/test/integration/typescript-hmr/index.test.js

As can be seen in the results, Some proposals more impactful than others

54

Chapter 6

Related Work

In this chapter, we present work related to other query languages for source code, aspect-

oriented programming, some code querying methods, and other JavaScript parsers. This

all relates to the work described in this thesis.

6.1 Aspect-Oriented Programming

AoP, is a programming paradigm that gives increased modularity by allowing for a high

degree of separation of concerns, specifically focusing on cross-cutting concerns.

Cross-cutting concerns are aspects of a software program or system that have an effect

at multiple levels, cutting across the main functional requirements. Such aspects are often

related to security, logging, or error handling, but could be any concern that are shared

across an application.

In AOP, one creates an aspect, which is a module that contains some cross-cutting

concern the developer wants to achieve, this can be logging, error handling or other

concerns not related to the original classes it should applied to. An aspect contains

advices,which is the specific code executed when certain conditions of the program are

met, an example of these are before advice, which is executed before a method executes,

after advice, which is executed after a method regardless of the methods outcome, and

around advice, which surrounds a method execution. Contained within the aspect is

also a pointcut, which is the set of criteria determining when the aspect is meant to be

executed. This can be at specific methods, or when specific constructors are called etc.

55

Aspect oriented programming is similar to this project in that to define where pointcuts

are placed, we have to define some structure and the AOP library has to search the code

execution for events triggering the pointcut and run the advice defined within the aspect

of that given pointcut. Essentially performing a rewrite of the code during execution to

add functionality to multiple places in the executing code.

6.2 Other source code query languages

To allow for simple analysis and refactoring of code, there exists many query languages

designed to query source code. These languages use several methods to allow for querying

code based on specific paradigms such as logical queries, declarative queries, or SQL-like

queries. All provide similar functionality of being able to query code. In this section

we will look some of these languages for querying source code, and how they relate to

JSTQL developed in this thesis.

6.2.1 CodeQL

CodeQL [11] is an object-oriented query language, it was previously known as .QL. .

CodeQL is used to analyze code semantically to discover vulnerabilities [34]. CodeQL

has taking inspiration from several areas of computer science to create their query lan-

guage [34], such a inspiration from SQL, Datalog, Eindhoven QUantifier Notation, and

Classes are Predicates.

An example of how queries are written in CodeQL can be defined below. This query

will find all methods that declare a method getNumber and a method setNumber.

1 from Class c
2 where c.declaresMethod("getNumber") and
3 (c.declaresMethod("setNumber")) and
4 c.fromSource ()
5 select c.getPackage (), c

The syntax of writing queries in CodeQL is not similar to JSTQL , as it is SQL-like,

and not declarative patterns, which makes the writing experience of the two languages

very different. Writing CodeQL queries are similar to querying a database, while queries

written in JSTQL are similar to defining an example of the structure you wish to search

for.

56

6.2.2 PMD XPath

PMD XPath is a language for Java source code querying, it supports querying of all

Java constructs. The reason it has this wide support is due to it constructing the entire

codebase’s AST in XML format, and then performing the query on the XML. This makes

the query language very versatile for static code analysis, and is used in the PMD static

code analysis tool.

1 public class a{
2 int someVar;
3 private void run(){
4 int otherVar;
5 }
6 }

There are two queries with PMD XPath defined in the example below. If we execute

these on the code above, the first will return both someVar and otherVar, while the

second will only return otherVar. The reason the second limits the search, is we define

that the parent of the variable declaration has to be a method. This is done by moving

three levels up in the XML and checking the name of the node residing there.

1 // LocalVariableDeclaration
2 // LocalVariableDeclaration[name (../../..) = "methodDeclaration "]

Comparing this tool to JSTQL , we can see it is good at querying code based on

structure, which our tool also supports. The main difference is the manor of which each

tool does this, JSTQL uses JavaScript templates to perform the query, making writing

queries simple for users as they are based in JavaScript. PMD XPath uses a custom

query language to perform structural queries that is quite verbose, and requires extended

knowledge of the AST that is currently being queried.

6.2.3 XSL Transformations

6.2.4 Jackpot

Jackpot [36] is a query language created for the Apache Netbeans platform [35], it has

since been mostly renamed to Java Declarative Hints Language, we will continue to refer

to it as Jackpot in this section. The language uses declarative patterns to define source

code queries, these queries are used in conjunction with multiple rewrite definitions. This

is used in the Apache Netbeans suite of tools to allow for declarative refactoring of code.

57

This is quite similar to the form of JSTQL , as both language define som query by

using similar structure, in Jackpot you define a pattern, then every match of that pattern

can be re-written to a fix-pattern, each fix-pattern can have a condition attached to it.

This is quite similar to the applicable to and transform to sections of JSTQL . Jackpot

also supports something similar to the wildcards in JSTQL , as you can define variables in

the pattern definition and transfer them over to the fix-pattern definition. This is closely

related to the definition of wildcards in JSTQL , though without type restrictions and

notation for matching more than one AST node.

The example of a query and transformation below, will query the code for variable

declarations with initial value of 1, and then change them into a declaration with initial

value of 0.

1 "change declarations of 1 to declarations of 0":
2 int $1 = 1;
3 => int $1 = 0

6.3 JetBrains structural search

JetBrains integrated development environments have a feature that allows for structural

search and replace [20]. This feature is intended for large code bases where a developer

wants to perform a search and replace based on syntax and semantics, not just a regular

text based search and replace. A search is applied to specific files of the codebase or the

entire codebase. It does not recursively check the entire static structure of the code, but

this can be specified in the user interface of structural search and replace.

When doing structural search in Jetbrains IntelliJ IDEA, templates are used to

describe the query used in the search. These templates use variables described with

$variable$, these allow for transferring context to the structural replace.

This tool is an interactive experience, where each match is showcased in the find

tool, and the developer can decide which matches to apply the replace template to. This

allows for error avoidance and a stricter search that is verified by humans. If the developer

wants, they do not have to verify each match and just replace everything.

When comparing this tool to JSTQL and its corresponding program, there are some

similarities. They are both template based, which means a search uses a template to

define query, both templates contain variables/wildcards in order to match against a free

58

section, and the replacing structure is also a template based upon those same variables.

A way of matching the variables/wildcards of structural search and replace also exists,

one can define the amount of X node to match against, similar to the + operator used

in JSTQL . A core difference between JSTQL and structural search and replace is the

variable type system. When performing a match and transformation in JSTQL the types

are used extensively to limit the match against the wildcards, while this limitation is not

possible in structural search and replace.

6.4 Other JavaScript parsers

This section will explore other JavaScript parsers that could have been used in this

project. We will give a brief introduction of each of them, and discuss why they were not

chosen.

Speedy Web Compiler

Speedy Web Compiler [19] is a library created for parsing JavaScript and other dialects

like JSX, TypeScript faster. It is written in Rust and advertises faster speeds than Babel

and is used by large organizations creating applications and tooling for the web platform.

Similar to Babel [3], Speedy Web Compiler is an extensible parser that allows for

changing the specification of the parsed program. Its extensions are written in Rust.

While it does not have as mature of a plugin system as Babel, its focus on speed makes

it widely used for large scale web projects.

Speedy Web Compiler supports features out of the box such as Compilation, used

for TypeScript and other languages that are compiled down to JavaScript. Bundling,

which takes multiple JavaScript/TypeScript files and bundles them into a single out-

put file, while handling naming collisions. Minification, to make the bundle size of a

project smaller, transforming for use with WebAssembly, and custom plugins to change

the specification of the languages parsed by SWC.

Compared to Babel used in this paper, SWC focuses on speed, as its main selling

point is a faster way of developing web projects.

59

Acorn

Acorn [1] is parser written in JavaScript to parse JavaScript and it’s related languages.

Acorn focuses on plugin support in order to support extending and redefinition on how

it’s internal parser works. and has it’s own tree traversal library Acorn Walk. Babel is

originally a fork of Acorn, while Babel has since had a full rewrite. Acorn focuses heavily

on supporting third party plugins, which Babel does not. However Acorn was not a good

fit for this project, as Acorn only supports Stage 4 proposals, and support for proposals

in the early stages is a requirement.

6.5 Model-to-Model transformations

60

Chapter 7

Future Work

Provide access and gather feedback. This project is build upon creating a tool for

users of EcmaScript to see new proposals within their own codebase. The idea behind

this is to use the users familiarity to showcase new syntactic proposals, and get valuable

feedback to the committee developing the ECMA-262 standard. This means making the

definitions of a proposal in JSTQL and this tool available to end-users to execute using

their own code. This can come in multiple forms, we suggest some ideas, such as a

playground on the web, an extension for Visual Studio Code, or to be used in github pull

requests.

Supporting other languages. The idea of showcasing changes to a programming

language by transforming user code is not only limited to EcmaScript, and could be

applied to many other programming languages using a similar development method to

EcmaScript. The developers of a language could write definitions of new changes for their

respective language, and use a similar tool to the one discussed in this thesis to showcase

possible new changes.

Parameterized specifications. The current form of JSTQL supports writing each

template as its own respective case, but multiple templates might be very similar and

could be written using generics that are shared between case definitions. Introducing this

might give a simpler way of writing more complex definitions of a proposal transformation

by re-using generic type parameters for the wildcards used in the transformations.

Fully self-hosting JSTQL-SH . The current version of JSTQL-SH relies on this

tools parser to generate the AST for the type expressions used for matching by wildcards.

This might make this tool more difficult to adopt for the committee. Therefore adding

61

functionality for writing these type expressions purely in JavaScript and allowing for the

use of JavaScript as its own meta language is an interesting avenue to explore.

Support for custom proposal syntax. Currently this tool relies heavily on that a

proposal is supported by [3]Babel. This makes the tool quite limited in what proposals

could be defined and transformed due to relying on Babel for parsing the templates and

generating the output code. Introducing some way of defining new syntax for a proposal

in the proposal definition, and allowing for parsing JavaScript containing that specific

new syntax would limit the reliance on Babel, and allow for defining proposals earlier in

the development process. This can possibly be done by implementing a custom parser

inside this tool that allows defining custom syntax for specific new proposals.

62

Bibliography

[1] acorn, May 2024.

URL: https://github.com/acornjs/acorn. [Online; accessed 21. May 2024].

[2] atom, May 2024.

URL: https://github.com/atom/atom. [Online; accessed 23. May 2024].

[3] Babel · Babel, May 2024.

URL: https://babeljs.io. [Online; accessed 10. May 2024].

[4] babel/packages/babel-parser/ast/spec.md at main · babel/babel, May 2024.

URL: https://github.com/babel/babel/blob/main/packages/babel-parser/ast/spec.md.

[Online; accessed 28. May 2024].

[5] @babel/generator · Babel, May 2024.

URL: https://babeljs.io/docs/babel-generator. [Online; accessed 12. May 2024].

[6] @babel/parser · Babel, May 2024.

URL: https://babeljs.io/docs/babel-Parser. [Online; accessed 14. May 2024].

[7] proposals, May 2024.

URL: https://github.com/babel/proposals. [Online; accessed 27. May 2024].

[8] What is Babel? · Babel, May 2024.

URL: https://babeljs.io/docs/#spec-compliant. [Online; accessed 29. May 2024].

[9] @babel/traverse · Babel, May 2024.

URL: https://babeljs.io/docs/babel-traverse. [Online; accessed 12. May 2024].

[10] bootstrap, May 2024.

URL: https://github.com/twbs/bootstrap. [Online; accessed 23. May 2024].

[11] CodeQL, May 2024.

URL: https://codeql.github.com. [Online; accessed 29. May 2024].

63

https://github.com/acornjs/acorn
https://github.com/atom/atom
https://babeljs.io
https://github.com/babel/babel/blob/main/packages/babel-parser/ast/spec.md
https://babeljs.io/docs/babel-generator
https://babeljs.io/docs/babel-Parser
https://github.com/babel/proposals
https://babeljs.io/docs/#spec-compliant
https://babeljs.io/docs/babel-traverse
https://github.com/twbs/bootstrap
https://codeql.github.com

[12] Functions · The Julia Language, May 2024.

URL: https://docs.julialang.org/en/v1/manual/functions/#Function-composition-

and-piping. [Online; accessed 24. May 2024].

[13] Langium, April 2024.

URL: https://langium.org. [Online; accessed 10. May 2024].

[14] next.js, May 2024.

URL: https://github.com/vercel/next.js. [Online; accessed 23. May 2024].

[15] proposal-pipeline-operator, May 2024.

URL: https://github.com/tc39/proposal-pipeline-operator. [Online; accessed 21.

May 2024].

[16] Bikeshedding the Hack topic token · Issue #91 · tc39/proposal-pipeline-operator,
May 2024.

URL: https://github.com/tc39/proposal-pipeline-operator/issues/91. [Online; ac-

cessed 24. May 2024].

[17] proposal-do-expressions, May 2024.

URL: https://github.com/tc39/proposal-do-expressions. [Online; accessed 2. May

2024].

[18] react, May 2024.

URL: https://github.com/facebook/react. [Online; accessed 23. May 2024].

[19] Rust-based platform for the Web – SWC, May 2024.

URL: https://swc.rs. [Online; accessed 21. May 2024].

[20] Structural search and replace | IntelliJ IDEA, April 2024.

URL: https://www.jetbrains.com/help/idea/structural-search-and-replace.html. [On-

line; accessed 22. May 2024].

[21] TC39 - Specifying JavaScript., May 2024.

URL: https://tc39.es. [Online; accessed 26. May 2024].

[22] The TC39 Process, April 2024.

URL: https://tc39.es/process-document. [Online; accessed 24. May 2024].

[23] how-we-work/implement.md at main · tc39/how-we-work, May 2024.

URL: https://github.com/tc39/how-we-work/blob/main/implement.md#transpiler-

implementations. [Online; accessed 29. May 2024].

64

https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://docs.julialang.org/en/v1/manual/functions/#Function-composition-and-piping
https://langium.org
https://github.com/vercel/next.js
https://github.com/tc39/proposal-pipeline-operator
https://github.com/tc39/proposal-pipeline-operator/issues/91
https://github.com/tc39/proposal-do-expressions
https://github.com/facebook/react
https://swc.rs
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://tc39.es
https://tc39.es/process-document
https://github.com/tc39/how-we-work/blob/main/implement.md#transpiler-implementations
https://github.com/tc39/how-we-work/blob/main/implement.md#transpiler-implementations

[24] TOML: Tom’s Obvious Minimal Language, May 2024.

URL: https://toml.io/en. [Online; accessed 27. May 2024].

[25] three.js, May 2024.

URL: https://github.com/mrdoob/three.js. [Online; accessed 23. May 2024].

[26] ECMAScript® 2025 Language Specification, May 2024.

URL: https://tc39.es/ecma262. [Online; accessed 28. May 2024].

[27] Boyko B. Bantchev. Putting more meaning in expressions. SIGPLAN Not., 33(9):

77–83, September 1998. ISSN 0362-1340. doi: 10.1145/290229.290237.

URL: https://dl.acm.org/doi/10.1145/290229.290237.

[28] Matthew S. Davis. An object oriented approach to constructing recursive descent

parsers. SIGPLAN Not., 35(2):29–35, feb 2000. ISSN 0362-1340. doi: 10.1145/

345105.345113.

URL: https://doi.org/10.1145/345105.345113.

[29] Sven Efftinge and Miro Spoenemann. Xtext - Language Engineering Made Easy!,

February 2024.

URL: https://eclipse.dev/Xtext. [Online; accessed 29. May 2024].

[30] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Laurence Tratt, Remi

Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex

Loh, et al. Evaluating and comparing language workbenches: Existing results and

benchmarks for the future. Computer Languages, Systems & Structures, 44:24–47,

2015.

[31] Martin Hirzel, Scott Schneider, and Kanat Tangwongsan. Sliding-Window Aggrega-

tion Algorithms: Tutorial. In DEBS ’17: Proceedings of the 11th ACM International

Conference on Distributed and Event-based Systems, pages 11–14. Association for

Computing Machinery, New York, NY, USA, June 2017. ISBN 978-1-45035065-5.

doi: 10.1145/3093742.3095107.

URL: https://dl.acm.org/doi/abs/10.1145/3093742.3095107.

[32] KathleenDollard. Symbol and Operator Reference - F#, May 2024.

URL: https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/symbol-

and-operator-reference/#type-symbols-and-operators. [Online; accessed 24. May

2024].

[33] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop

domain-specific languages. ACM Comput. Surv., 37(4):316–344, dec 2005. ISSN

65

https://toml.io/en
https://github.com/mrdoob/three.js
https://tc39.es/ecma262
https://dl.acm.org/doi/10.1145/290229.290237
https://doi.org/10.1145/345105.345113
https://eclipse.dev/Xtext
https://dl.acm.org/doi/abs/10.1145/3093742.3095107
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/symbol-and-operator-reference/#type-symbols-and-operators
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/symbol-and-operator-reference/#type-symbols-and-operators

0360-0300. doi: 10.1145/1118890.1118892.

URL: https://doi.org/10.1145/1118890.1118892.

[34] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjorn Ek-

man, Neil Ongkingco, Damien Sereni, and Julian Tibble. Keynote address: .ql

for source code analysis. In Seventh IEEE International Working Conference on

Source Code Analysis and Manipulation (SCAM 2007), pages 3–16, 2007. doi:

10.1109/SCAM.2007.31.

[35] Apache NetBeans. Welcome to Apache NetBeans, February 2024.

URL: https://netbeans.apache.org/front/main/index.html. [Online; accessed 21. May

2024].

[36] Apache NetBeans. Java Declarative Hints Language, March 2024.

URL: https://netbeans.apache.org/front/main/jackpot/HintsFileFormat/#variables.

[Online; accessed 21. May 2024].

[37] J. Palsberg and C.B. Jay. The essence of the visitor pattern. In Proceed-

ings. The Twenty-Second Annual International Computer Software and Applica-

tions Conference (Compsac ’98) (Cat. No.98CB 36241), pages 9–15, 1998. doi:

10.1109/CMPSAC.1998.716629.

[38] Weisong Sun, Chunrong Fang, Yun Miao, Yudu You, Mengzhe Yuan, Yuchen Chen,

Quanjun Zhang, An Guo, Xiang Chen, Yang Liu, and Zhenyu Chen. Abstract syntax

tree for programming language understanding and representation: How far are we?,

2023.

66

https://doi.org/10.1145/1118890.1118892
https://netbeans.apache.org/front/main/index.html
https://netbeans.apache.org/front/main/jackpot/HintsFileFormat/#variables

Appendix A

TypeScript types of wildcard type expressions

1 export interface Identifier extends WildcardNode {
2 nodeType: "Identifier";
3 name: string;
4 }
5
6 export interface Wildcard {
7 nodeType: "Wildcard";
8 identifier: Identifier;
9 expr: TypeExpr;
10 star: boolean;
11 }
12
13 export interface WildcardNode {
14 nodeType: "BinaryExpr" | "UnaryExpr" | "GroupExpr" | "Identifier";
15 }
16
17 export type TypeExpr = BinaryExpr | UnaryExpr | PrimitiveExpr;
18
19 export type BinaryOperator = "||" | "&&";
20
21 export type UnaryOperator = "!";
22
23 export interface BinaryExpr extends WildcardNode {
24 nodeType: "BinaryExpr";
25 left: UnaryExpr | BinaryExpr | PrimitiveExpr;
26 op: BinaryOperator;
27 right: UnaryExpr | BinaryExpr | PrimitiveExpr;
28 }
29 export interface UnaryExpr extends WildcardNode {
30 nodeType: "UnaryExpr";
31 op: UnaryOperator;
32 expr: PrimitiveExpr;
33 }
34
35 export type PrimitiveExpr = GroupExpr | Identifier;
36
37 export interface GroupExpr extends WildcardNode {
38 nodeType: "GroupExpr";
39 expr: TypeExpr;
40 }

Listing A.1: TypesScript types of Type Expression AST

67

	Introduction
	Background
	Technical Committee 39
	ECMA-262 Proposals

	AST and Babel
	Source Code Querying
	Domain Specific languages
	Language Workbenches

	Collecting User Feedback for Syntactic Proposals
	The core idea
	Applying a proposal

	Applicable proposals
	Syntactic Proposals
	Simple example of a syntactic proposal
	"Pipeline" Proposal
	"Do Expression"
	Await to Promise

	Searching user code for applicable snippets
	Structure of JSTQL
	How a match and transformation is performed
	Transforming
	Using JSTQL

	Using the JSTQL with syntactic proposals
	"Pipeline" Proposal
	"Do Expressions" Proposal
	"Await to Promise" imaginary proposal

	JSTQL-SH

	Implementation
	Architecture of the solution
	Parsing JSTQL using Langium
	Langium

	Wildcard extraction and parsing
	Using Babel to parse
	Outline of transforming user code
	Matching
	Determining if AST nodes match
	Matching a single Expression/Statement template
	Matching multiple Statements

	Transforming

	Evaluation
	Real Life source code
	Example transformations

	Related Work
	Aspect-Oriented Programming
	Other source code query languages
	CodeQL
	PMD XPath
	XSL Transformations
	Jackpot

	JetBrains structural search
	Other JavaScript parsers
	Model-to-Model transformations

	Future Work
	Bibliography
	TypeScript types of wildcard type expressions

