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Abstract

Technical Committee 39 (TC39) of Ecma International is the body responsible for the
evolution of the ECMAScript programming language, better known as JavaScript. Sug-
gested changes to the language are presented in a form of proposals. To allow JavaScript
users to form opinions about a proposal during the extensive design stage, proposal
descriptions mention examples that showcase various corner cases. In this thesis, we im-
plement a tool to search a user’s codebase and demonstrate how the codebase would look
like if the functionality defined by a proposal were a part of the language. We evaluate
our tool on two contentious ECMAScript proposals (“Do Expression” and “Pipeline”) and
demonstrate that specifying proposals and transforming user code is feasible. The work
presented in this theses is an initial step in creating a language workbench-like tool to
aid in the development and design of widely adopted programming languages.
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Chapter 1

Introduction

The development and evolution of the programming language ECMAScript—which is
defined by the ECMA-262 language standard—is done by the Technical Committee 39
of Ecma International. The committee has the responsibility to investigate proposals
suggested for addition into the ECMASript language. During this process, proposals go
through numerous iterations of improving the solution space of the problem identified
in a proposal. The community of JavaScript developers can give feedback on proposals;
this feedback has to be of a certain quality—it is, therefore, crucial that the users are
confident in their understanding of the proposal, the suggested solution, and its potential
corner cases. To aid users in this understanding, the description of a proposal is expected
to illustrate the solution by presenting several examples—in form of ECMAScript code
snippets—that highlight various scenarios for the use of the functionality suggested in a
proposal. In this thesis, we suggest a way of demonstrating these scenarios in a user’s
own codebase. We conjecture this will lower the barrier of understanding a proposal, and
will allow the user to focus solely on the concepts a proposal introduces.

This thesis discusses a way of defining transformations of code specifically for syntactic
proposals—these are proposals that do not introduce any new semantics to the language,
but merely improve the ergonomics of how the code is written. The idea is to identify
code fragments in a user’s codebase to which a proposal can be applied, and then replace
that code with an equivalent code that uses the functionality introduced in a proposal.

We developed a domain-specific language called “JSTQL” (for “JavaScript Transfor-
mation Query Language”) for specifying queries and transformations on JavaScript code.
This DSL utilizes JavaScript templates to query user code and to define how the matched
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code should be transformed. To parse both the templates and user code, we employ the
Babel [? ] library. The templates defined in JSTQL may include variables—referred to as
wildcards—which are special blocks written inside the template. These blocks facilitate
matching against arbitrary code, and transforming that code according to the specified
transformation; this allows the transformed code to maintain its context. To specify what
kind of code a wildcard will match against, we use type expressions, which are Boolean
propositions on the node types as defined in the Babel abstract syntax tree specification.

The evaluation of the transformation tool implemented in this thesis involved speci-
fying the proposals “Do Expression” [? ] and “Pipeline” [? ] in our DSL. These speci-
fications were applied to existing large codebases in order to assess the functionality of
the transformations. The results obtained from this process confirmed the functionality
of the tool, and provided insights into how significant of an “impact” the design decisions
in each proposal might have on existing codebases.

The transformation tool presented in this thesis is meant to be the initial step in creat-
ing a language workbench-like tool for designing widely adopted programming languages.
We created the core machinery of transforming code based on a proposal specification,
while implementing ways to present this to users and gather feedback on proposals is left
up to future work.
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Chapter 2

Background

Below we give an overview of the evolution process of the ECMAScript programming
language, abstract syntax trees, source code querying, domain-specific languages, and
language workbenches. These are instrumental to the implementation of the tool de-
scribed in this thesis.

2.1 Evolution of the JavaScript programming language

Technical Committee 39 (TC39) is a technical committee within Ecma International,
whose main goal is to develop the language standard for the ECMAScript programming
language (informally known as JavaScript); this standard is known as ECMA-262 [?
]. Apart from this standard, the committee is also responsible for maintaining related
standards: on internalization API (ECMA-402), the standard for JSON (ECMA-404),
and ECMAScript specification suite (ECMA-414). The members of the committee are
representatives of companies, academic institutions, and other organizations interested
in developing and maintaining the ECMAScript language. The delegates include experts
in JavaScript engines, tooling surrounding JavaScript, and other areas of the JavaScript
ecosystem.

ECMA-262 Proposals We explain now what a proposal is, and how proposals are
developed in TC39 for the ECMA-262 language standard.
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A proposal is a suggested change to the ECMA-262 language standard. These ad-
ditions to the standard have to solve some form of problem with the current version of
ECMAScript. Such problems can come in many forms, and can apply to any part of the
language. Examples include: a feature that is not present in the language, inconsistent
parts of the language, simplification of common patterns, and so on. The proposal de-
velopment process is defined in the TC39 Process Document [? ], which describes each
stage a proposal has to go through in order to be accepted into the ECMA-262 language
standard.

The purpose of stage 0 of the process is to allow for exploration and ideation around
which parts of the current version of ECMAScript can be improved, and then to define a
problem space for the committee to focus on improving.

At stage 1, the committee will start development of a proposal. In order for a proposal
to enter this stage, several requirements have to be fulfilled. First, a champion—a delegate
of the committee who will be responsible for the advancement of the proposal—has to
be identified. In addition, a rough outline of the problem must be provided, and a
general shape of a solution must be given. There must have been a discussion around
key algorithms, abstractions and semantics of the proposal. Exploration of potential
implementation challenges and cross-cutting concerns must have been done. The final
requirement is for all parts of the proposal to be captured in a public repository. Once
all these requirements are met, a proposal is accepted into stage 1. During this stage, the
committee will work on the design of a solution, and resolve any cross-cutting concerns
discovered previously.

At stage 2, a preferred solution has been identified. Requirements for a proposal to
enter this stage are as follows: all high level APIs and syntax must be described in the
proposal document, illustrative examples have to be worked out, and an initial specifi-
cation text must be drafted. During this stage, the following areas of the proposal are
explored: refining the identified solution, deciding on minor details, and create experi-
mental implementations.

At stage 2.7, the proposal is principally approved, and has to be tested and validated.
To enter this stage, the major sections of the proposal must be complete. The specification
text should be finished, and all reviewers of the specification have approved. Once a
proposal has entered this stage, testing and validation will be performed. This is done
through the prototype implementations at stage 2.
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Once a proposal has been sufficiently tested and verified, it is moved to stage 3. During
this stage, the proposal should be implemented in at least two major JavaScript engines.
The proposal should be tested for web compatibility issues, and integration issues in the
major JavaScript engines.

At stage 4 the proposal is completed and will be included in the next revision of the
ECMA-262.

2.2 Abstract Syntax Trees

An abstract syntax tree (AST) is a tree representation of source code. Every node of such
a tree represents a construct from the source code. ASTs remove syntactic details while
maintaining the structure of the program. Each node is set to represent constructs of the
programming language, such as statements, expressions, declarations, and so on. Thus,
every node type represents a grammatical construct in the language the AST was built
from.

ASTs are important for manipulating source code; they are used by various tools that
need to represent source code in some way to perform operations with it [? ]. Using
ASTs is favored over raw text due to their structured nature; this especially manifests
when considering tools like compilers, interpreters, or code transformation tools. ASTs
are produced by language parsers. For JavaScript, one of the popular libraries used for
parsing is Babel [? ]. Babel is a JavaScript toolchain, and its main usage is converting
source code written in the version ECMASCript 2015 or a newer one into older versions
of JavaScript. This conversion is done to increase the compatibility of JavaScript in
older execution environments. Babel has a suite of libraries used to work with JavaScript
source code. Each library relies on Babel’s AST definition [? ]. The AST specification
Babel uses tries to stay as close as possible to the ECMAScript standard [? ]. This fact
has made Babel a recommended parser to use for proposal transpiler implementations [?
]. A simple example of how source code parsed into an AST with Babel can be seen in
Figure ??.
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1 let name = f(100);

VariableDeclaration

VariableDeclarator

Identifier: name CallExpression

Identifier: f NumericLiteral: 100

Figure 2.1: Example of source code parsed to Babel AST.

To achieve compilation of newer versions into older versions, Babel uses a plugin
system that allows a myriad of features to be enabled or disabled. This makes the parser
versatile to fit different ways of working with JavaScript source code. Because of this,
Babel allows parsing of JavaScript experimental features. These features are usually
proposals that are under development by TC39, and the development of these plugins
are a part of the proposal deliberation process. This allows for experimentation as early
as stage 1 of the proposal development process. Some examples of proposals that were
first supported by Babel’s plugin system are “Do Expression” [? ] and “Pipeline” [? ].
These proposals are both currently at stage 1 and stage 2, respectively.

In this project, we will use Babel to parse JavaScript into abstract syntax trees. This
choice was made because of Babel’s support of very early stage proposals.

2.3 Source Code Querying

Source code querying is the action of searching source code to extract some information
or find specific sections of code. Source code querying comes in many forms, the simplest
of which is text search. Since source code is primarily text, one can apply text search
techniques to perform a query, or a more complex approach using regular expressions (e.g.,
tools like grep). Both these methods do not allow for queries based on the structure of
the code, and rely solely on its syntax. AST-based queries allow queries to be written
based on both syntax and structure, and are generally more powerful than regular text
based queries. Another technique for code querying is based on semantics of code.
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The primary use cases for source code querying are code understanding, analysis,
code navigation, enforcement of styles, along with others. All these are important tools
developers use when writing programs, and they all rely on some form of source code
queries. One such tool is Integrated Development Environments (IDEs), as these tools
are created to write source code, and, therefore, rely on querying the source code for
many of their features. One such example of code querying being used in an IDE is
JetBrains IntelliJ structural search and replace [? ], where queries are defined based on
code structure to find and replace sections of our program.

2.4 Domain-Specific languages

Domain-specific languages (DSLs) are software languages specialized to a specific narrow
domain [? ]. DSLs allow domain experts to get involved in the software development
process, as it is expected that a domain expert would have the capabilities to read and
write DSL code. A domain-specific language allows for very concise and expressive code
to be written that is specifically designed for the domain. Using a DSL might result in
faster development because of this expressiveness within the domain; this specificity to a
domain might also increase correctness. However, there are also some disadvantages to
DSLs: the restrictiveness of a DSL might become a hindrance if it is not well designed
to represent the domain. Domain-specific languages also might have a learning curve,
this makes these language less accessible for the target users. Developing a domain-
specific language might is a non-trivial process [? ], as implementing a DSL requires both
knowledge of the domain and knowledge of software language engineering.

2.5 Language Workbenches

A language workbench [? ] is an integrated development environment created to facilitate
the development of a software language, such as a domain-specific language. The goal
of a language workbench is to give increased productivity during development, and to
enhance the design and evolution of software languages [? ].

Commonly language workbenches generate tooling for a software language. One such
tool is a language parser that is generated from the language definition within the lan-
guage workbench. Another such tool commonly generated by a language workbench is
an integrated development environment, such IDEs provide functionality such as syntax
highlighting, code navigation, error highlighting, along with others.
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Chapter 3

A domain-specific language for
matching and transforming source code

The tool that we implement in this thesis should allow previewing how an ECMAScript
proposal could affect a user’s codebase. We only focus on proposals that introduce new
syntactic forms that merely abstract certain use patterns that could be otherwise written
in JavaScript—but a verbose or less idiomatic manner. We call these syntactic proposals.
The idea is to identify code fragments in a user’s codebase to which a proposal can be
applied. An application of a proposal can be thought of as a process of identifying the
user’s code that “matches” a proposal’s problem space, and then replacing that code with
a semantically equivalent code that uses the functionality introduced in the proposal.

Thus, it will be possible to identify all the places in the user’s codebase which can be
affected by a proposal—and to show to the user how the modified version of the user’s
own code will look like. This way a user will be able to give a very specific feedback to
the TC39 committee. Importantly, the fact that a user is familiar with their codebase
could potentially allow for a more useful feedback and thus a more efficient process of
developing and evolving the ECMAScript programming language.

Implementing the idea outlined here requires some way of matching and transforming
code. A proposal should thus have a precise specification, where the matching and the
transformation can be defined. For this purpose, we have designed and implemented a
domain-specific language, which will be introduced in this chapter.
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3.1 Applicable proposals

A syntactic proposal is a proposal that only introduces changes to the syntax of a lan-
guage. This means that the proposal assumes either no or very limited change to func-
tionality, and no changes to the semantics of the language. This limits the scope of
proposals this project is applicable to, but it also focuses solely on some of the most
contentious proposals where the users of the language might have the strongest opinions.

3.1.1 Simple example of a syntactic proposal

Consider an imaginary proposal “numerical literals” . This proposal describes adding
an optional keyword for declaring numerical variables if the expression of the declaration
is a numerical literal.

An example of this proposal can be seen below:
1 // Original code
2 let x = 100;
3 let b = "Some String";
4 let c = 200;
5
6 // Code after application of proposal
7 int x = 100;
8 let b = "Some String";
9 let c = 200;

See above that the change is optional, and is not applied to the declaration of c, but
it is applied to the declaration of x. Since the change is optional to use, and essentially
is syntax sugar, this proposal does not make any changes to functionality or semantics,
and can therefore be categorized as a syntactic proposal.

3.1.2 “Pipeline” Proposal

The “Pipeline” proposal [? ] is a syntactic proposal which focuses on solving problems
related to nesting of function calls and other expressions that take an expression as an
argument.

This proposal aims to solve two problems with performing consecutive operations on a
value. In ECMAScript there are two main styles of achieving this functionality currently:
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nesting calls and chaining calls, each of them come with a differing set of challenges when
used.

Nesting calls is mainly an issue related to function calls with one or more arguments.
When doing many calls in sequence the result will be a deeply nested call expression.
Using nested calls can have some specific challenges related to readability. The reading
order of nested calls is from right to left rather than the regular reading direction of
JavaScript code which is left to right. This means it is difficult to switch the reading
direction when working out which call happens in which order. When using functions
with multiple arguments in the middle of the nested call, it is not intuitive to see what
call its arguments belong to. These issues are the main challenges this proposal is trying
to solve. There are currently ways to improve readability with nested calls, as they can be
simplified by using temporary variables. While this does introduce its own set of issues, it
provides some way of mitigating the readability problem. Another positive side of nested
calls is they do not require a specific design to be used, and a library developer does not
have to design their library around this specific call style. In the listings below, examples
of deeply nested calls with both single and multiple arguments can be seen.

1 // Deeply nested call with
↪→ single arguments

2 f1(f2(f3(f4(v))));

1 // Deeply nested call with
↪→ multi argument functions

2 f1(v5, f2(f3(v3 , f4(v1, v2)),
↪→ v4), v6);

Chaining calls solves some of these issues: indeed, as it allows for a more natural read-
ing direction left to right when identifying the sequence of call, arguments are naturally
grouped together with their respective function call, and it provides a way of untangling
deep nesting. However, executing consecutive operations using chaining has its own set
of challenges. To use chaining, the API of the code being called has to be designed to
allow for chaining. This is not always the case however, making use of chaining when
it has not been specifically designed for can be very difficult. There are also concepts
in JavaScript not supported when using chaining, such as arithmetic operations, literals,
await expressions, yield expressions, and so on. This is because all of these concepts
would break the chain of calls, and one would have to use temporary variables. In the
listings below are examples of both chaining with no arguments other than self, and
examples where additional arguments are passed during the chain.

1 // Chaining calls
2 f1().f2().f3();

1 // Chaining calls with multiple
↪→ arguments

2 f1().f2(v1, v2).f3(v2).f4();

The “Pipeline” proposal aims to combine the benefits of these two styles without the
challenges each method faces. The proposal wants to achieve a similar style to chaining
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when doing deeply nested calls. The idea is to use syntactic sugar to change the writing
order of the calls without influencing the API of the functions. Doing so will allow each
call to come in the direction of left to right, while still maintaining the modularity of
deeply nested function calls.

The proposal introduces a pipe operator, which takes the result of an expression on
the left, and pipes it into an expression on the right. The location of where the result
is piped to is where the topic token is located. All the specifics of the exact token used
as a topic token and exactly what operator will be used as the pipe operator might be
subject to change, and is currently under discussion [? ].

The code snippets below showcase the machinery of the proposal. They are the
examples used to showcase the proposal in the proposal repository [? ].

The example below showcases a left to right ordering of function calls that follows the
order of execution.

1 // Status quo
2 const json = await

↪→ npmFetch.json(
3 npa(pkgs [0]).escapedName ,

↪→ opts);

1 // With pipes
2 const json = pkgs [0]
3 |> npa (%).escapedName
4 |> await npmFetch.json(%,

↪→ opts);

In the example below, we can see that functions calls with multiple arguments are
supported by “Pipeline”.

1 // Status quo
2 return filter(
3 obj , negate(cb(predicate)),

↪→ context);

1 // With pipes
2 return cb(predicate)
3 |> _.negate (%)
4 |> _.filter(obj , %,

↪→ context);

In the example below, we can see the topic token can be used multiple times to pass
the same expression several times on the right side of a “Pipeline” proposal expression.

1 // Status quo
2 return

↪→ xf[’@@transducer/result ’](
3 obj[methodName ](bind(
4 xf[’@@tr..’], xf),

↪→ acc));

1 // With pipes
2 return xf
3 |> bind (%[’@@tr..’], %)
4 |> obj[methodName ](%, acc)
5 |> xf[’@@tr..’](%);

The pipe operator is present in many other languages such as F# [? ], Julia [? ],
Elixir [? ] and Unix Shell [? ]. The main difference between the these languages pipe
operator and the pipe operator suggested in this proposal is the result of the left side
expression has to be piped into a function with a single argument, this proposal suggests
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a topic reference to be used instead, clearly marking where the left side result should be
piped to. Proposals suggesting pipe expressions similar to how it is done in F# have
been rejected by TC39 multiple times, but were rejected both times due to syntactical
concerns and technical challenges [? ].

3.1.3 “Do Expression” Proposal

The “Do Expression” [? ] proposal is a proposal meant to bring a style of expression
oriented programming [? ] to ECMAScript. Expression oriented programming is a
concept taken from functional programming which allows for combining expressions in a
very free manner, resulting in a highly malleable programming experience.

The motivation of the “Do Expression” proposal is to allow for local scoping of a
code block that is treated as an expression. Thus, complex code requiring multiple
statements will be confined inside its own scope [? , Sect. 8.2] and the resulting value is
returned from the block implicitly as an expression, similarly to how unnamed functions
or arrow functions are currently used. To achieve this behavior in the current version of
ECMAScript, one needs to use immediately invoked unnamed functions [? , Sect. 15.2]
or immediately invoked arrow functions [? , Sect. 15.3].

The codeblock of a do expression has one major difference from these equivalent
functions, as it allows for implicit return of the final statement of the block, and is the
resulting value of the entire do expression. The local scoping of this feature allows for a
cleaner environment in the parent scope of the do expression. What is meant by this is
for temporary variables and other assignments used once can be enclosed inside a limited
scope within the do block. This allows for a cleaner environment inside the parent scope
where the do block is defined.

The current version of JavaScript enables the use of immediately invoked arrow func-
tions with no arguments to achieve similar behavior to “Do Expression”, and an example
of this can be seen in the listing below. The main difference between immediately invoked
arrow functions and “Do Expression” is the final statement/expression will implicitly re-
turn its Completion Record [? , Sect. 6.2.4], and thus an explicit return statement is
not needed.

1 // Current status quo
2 let x = () => {
3 let tmp = f();
4 return tmp + tmp + 1;
5 }();

1 // With do expression
2 let x = do {
3 let tmp = f();
4 tmp + tmp + 1;
5 };
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The example below is very similar to the one above, and uses an unnamed function [?
, 15.2] which is invoked immediately to produce similar behavior to the “Do Expression”
proposal.

1 // Current status quo
2 let x = function (){
3 let tmp = f();
4 let a = g() + tmp;
5 return a - 1;
6 }();

1 // With do expression
2 let x = do {
3 let tmp = f();
4 let a = g() + tmp;
5 a - 1;
6 };

3.1.4 “Await To Promise” (imaginary proposal)

We discuss now an imaginary proposal that was used as a running example during the de-
velopment of this thesis. This proposal demonstrates simple transformations of JavaScript
code. The transformation this proposal is meant to display is transforming code using
await [? , Sect. 27.7.5.3] into code which uses a promise [? , Sect. 27.2].

To perform this transformation, we define an equivalent way of expressing an await

expression as a promise. This means removing await, this expression now will return a
promise, which has a function then, this function is executed when the promise resolves.
We pass an arrow function as argument to then, and append each following statement in
the current scope [? , Sect. 8.2] inside the block of that arrow function. This will result
in equivalent behavior to using await. An example of a function using await can be seen
below on the left. The example below on the right is the same function but is using a
promise.

1 // Code containing await
2 async function a(){
3 let b = 9000;
4 let s = await asyncF ();
5 let c = s + 100;
6 return c + 1;
7 }

1 // Re-written using promises
2 async function a(){
3 let b = 9000;
4 return asyncF ()
5 .then(async (s) => {
6 let c = s + 100;
7 return c;
8 })
9 }

Transforming using this imaginary proposal will result in a returning the expres-
sion present at the first await expression, with a deferred function then which will
execute once the expression is completed. This function takes a callback containing a
lambda function with a single argument. This argument shares a name with the initial
VariableDeclaration. This is needed because we have to transfer all statements that
occur after the original await expression into the body of the callback function. This
callback function also has to be declared as async, in case any of the statements placed
into it contains await. This will result in equivalent behavior to the original code.
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3.2 Searching user code for applicable parts

To identify parts of code in the user’s code where a proposal is applicable, we need
some way to define patterns of code to use as a query. To do this, we have designed
and implemented a domain-specific language that allows matching parts of code that is
applicable to some proposal, and transforming those parts to use the features of that
proposal.

3.2.1 Structure of JSTQL

In this section, we describe the structure of JSTQL (JavaScript Template Query Lan-
guage), that was designed and implemented by the author of this thesis.

Proposal definition JSTQL is designed to mimic the examples already provided in
proposal descriptions. These examples can be seen in each of the proposals described in
Section ??. The idea is to allow a similar kind of notation to the examples in order to
define the transformations.

The first part of JSTQL is defining the proposal; this is done by creating a named
block containing all definitions of templates used for matching alongside their respective
transformation.

1 proposal Pipeline_Proposal {}

Case definition Each proposal will have one or more definitions of a template for
code to identify in the users codebase, and its corresponding transformation definition.
These are grouped together to have a simple way of identifying the corresponding cases
of matching and transformations. This block of the proposal is defined by the keyword
case and a block that contains its related fields. A proposal definition in JSTQL should
contain at least one case definition. This allows for matching many different code parts
and showcasing more of the proposal than a single concept the proposal has to offer.

1 case case_name {
2
3 }
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Template used for matching To define the template used to match, we have another
block defined by the keyword applicable to. This block will contain the template
defined using JavaScript with specific DSL blocks defined inside the template. This
template is used to identify applicable parts of the user’s code to a proposal.

1 applicable to {
2 "let a = 0;"
3 }

This applicable to template will create matches on any VariableDeclaration that is
initialized to the value 0, and has an Identifier with the name a.

Defining the transformation To define the transformation that is applied to a specific
matched part of the code, the keyword transform to is used. This block is similar to
the template block, however it uses the specific DSL identifiers defined in applicable to,
to transfer the context of the matched user code, this allows us to keep parts of the users
code important to the original context it was written in.

1 transform to{
2 "() => {
3 let b = 100;
4 }"
5 }

This transformation definition, will change any code matched to its corresponding match-
ing definition into exactly what is defined. This means for any matches produced this
code will be inserted in its place.

A complete specification in JSTQL Taking all these parts of JSTQL structure,
defining a proposal in JSTQL will look as follows.

1 proposal PROPOSAL_NAME {
2 case CASE_NAME_1 {
3 applicable to {
4 "let b = 100;"
5 }
6 transform to {
7 "() => {};"
8 }
9 }

10 case CASE_NAME_2 {
11 applicable to {
12 "console.log();"
13 }
14 transform to {
15 "console.dir();"
16 }
17 }
18 }

Listing 3.1: JSTQL definition of a proposal.
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This complete example of JSTQL has two case blocks. Each case is applied one at a time
to the user’s code. The first case will try to find any VariableDeclaration statements,
where the identifier is b, and the right side expression is a Literal with value 100.
The second case will change any empty console.log expression, into a console.dir

expression.

3.2.2 Matching and transforming code

To perform matching and transformation of the user’s code, we first have to have some
way of identifying applicable user code. These applicable code sections then have to be
transformed and inserted it back into the full user code definition.

Identifying applicable code To identify parts of code a proposal is applicable to, we
use templates, which are defined using JavaScript. These templates are used to identify
and match applicable parts of a users code. A matching part for a template is one that
produces an exactly equal AST structure, where each node of the AST has the same
information contained within it. This means that templates are matched exactly against
the users code; this does not really provide some way of querying the code and performing
context based transformations, so for that we use wildcards within the template.

Wildcards are interspliced into the template inside a block denoted by « ». Each
wildcard starts with an identifier, which is a way of referring to that wildcard in the
definition of the transformation template later. This allows for transferring the context
of parts matched to a wildcard into the transformed output, like identifiers, parts of
statements, or even entire statements, can be transferred from the original user code into
the transformation template. A wildcard can also contains a type expression. A type
expression is a way of defining exactly the types of AST nodes a wildcard will produce
a match against. These type expressions use Boolean logic together with the AST node-
types from BabelJS [? ] to create a very versatile of defining exactly what nodes a
wildcard can match against.

Wildcard type expressions Wildcard expressions are used to match AST node types
based on Boolean logic. This Boolean logic is based on comparison of Babel AST node
types [? ]. We do this because we need an accurate and expressive way of defining
specifically what kinds of AST nodes a wildcard can be matched against. This means a
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type expression can be as simple as VariableDeclaration: this will match only against
a node of type VariableDeclaration. We also special types for Statement for matching
against a statement, and Expression for matching any expression.

The example below will allow any node with type CallExpression to match against
this wildcard named expr.

1 << expr: CallExpression >>

To make this more expressive, the type expressions use binary and unary operators.
The following operators are supported: && for logical conjunction, || for logical disjunc-
tion, and ! for logical negation. This makes it possible to build complex type expressions,
enabling us to express exactly what nodes are allowed to match against a specific wildcard.

In the example below on line 1, we want to limit the wildcard to not match against any
nodes with type VariableDeclaration, while still allowing any other Statement. On line
2 below we want to avoid any loop-specific statements. We express this by allowing any
Statement, but we negate the expression containing the types of loop specific statements.

1 << notVariableDeclaration: Statement && !VariableDeclaration >>
2 << noLoopSpecificStatements: Statement && !( BreakStatement ||

↪→ ContinueStatement) >>

The wildcards support matching subsequent sibling nodes of the code against a single
wildcard. We achieve this behavior done by using a Kleene plus at the top level of the
expression. A Kleene plus means one or more, so we allow for one or more matches in
order when using this token. This is useful for matching against a series of one or more
specific nodes, the matching algorithm will continue to match until the type expression
no longer evaluates to true.

In the example below, we allow the wildcard to match multiple nodes with the Kleene
plus +. This example will continue to match against itself as long as the nodes are a
Statement and at the same time is not a ReturnStatement. This example showcases
how a wildcard that matches against many sibling nodes is written.

1 << statementsNoReturn : (Statement && !ReturnStatement)+ >>

In the example below a wildcard block is defined on the right hand side of an as-
signment statement. This wildcard will match against any AST node classified as a
CallExpression or an Identifier. This example showcases how wildcards are inter-
spliced with JavaScript templates.

1 let variableName = << expr1: (( CallExpression || Identifier) &&
↪→ !ReturnStatement)+ >>;
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3.2.3 Transforming code

When matching parts of the users code has been found, we need some way of defining how
to transform those parts to showcase a proposal. This is done using the transform to

template. This template describes the general structure of the newly transformed code.

A transformation template defines how the matches will be transformed after appli-
cable code has been found. The transformation is a general template of the code once
the match is replaced in the original AST. However, without transferring over the con-
text from the match, this would be a template search and replace. Thus, to transfer the
context from the match, wildcards are defined in this template as well. These wildcards
use the same block notation found in the applicable to template, however they do
not need to contain the types, as those are not needed in the transformation. The only
required field of the wildcard is the identifier defined in applicable to. This is done to
know which wildcard match we are taking the context from, and where to place it in the
transformation template.

The example below showcases a transformation that transforms a variable declaration
from using let to use const. We do this by defining the name of the variable as a
wildcard, and the expression as a wildcard. These are referenced in the transformation
to transfer context from the match into the transformation template.

1 // Example applicable to template
2 applicable to {
3 let <<variableName: Identifier >> = <<expr1: Expression >>;
4 }
5
6 // Example of transform to template
7 transform to {
8 const <<variableName >> = <<expr1 >>;
9 }

3.2.4 Using JSTQL

JSTQL is designed to closely mimic the style of the examples required in the TC39
process [? ]. We chose to design it this way to specifically make this tool fit the use-case
of the committee. Since the idea behind this project is to gather early user feedback on
syntactic proposals, the users of this kind of til is the committee themselves, as they are
the ones that want user feedback.

Writing a proposal definition in JSTQL is done with text, most domain-specific lan-
guages have some form of tooling to make the process of using the DSL simpler and more
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intuitive. JSTQL has an extension built for Visual Studio Code (see Figure ??). This
extension supports auto-completion, error checking, and other common IDE features.

Figure 3.1: Writing JSTQL in Visual Studio Code with extension.

The language server used in this extension performs validation of the wildcards. This
allows verification of wildcard declarations in applicable to, as shown in Figure ??. If a
wildcard is declared with no types, an error will be reported.

Figure 3.2: Error displayed when declaring a wildcard with no types.

The extension automatically uses wildcard declarations in applicable to in order
to verify that all wildcards referenced in transform to are declared. If an undeclared
wildcard is used, an error will be reported and the name of the undeclared wildcard will
be displayed, as shown in Figure ??.
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Figure 3.3: Error displayed with usage of undeclared wildcard.

3.3 Using the JSTQL with syntactic proposals

In this section, we present specifications of the proposals described in Section ??. We will
use these specifications to evaluate the tool created in this thesis. These specifications do
not necessarily need to cover every single case where the proposal might be applicable,
as they only have to be general enough to create some amount of examples that will
give a representative number of matches when the transformations are applied to some
relatively long user code.

This is because this tool is designed to be used by TC39 to gather feedback from
user’s on proposals during development. This use case means the specifications should
be defined in a way that showcases the proposal. This also means it is important that
the transformation is correct, as incorrect transformations might lead to bad feedback on
a proposal.
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3.3.1 “Pipeline” Proposal

This proposal is applicable to call expressions, and is aimed at improving code readability
when performing deeply nested function calls.

1 proposal Pipeline {
2
3 case SingleArgument {
4 applicable to {
5 "<<someFunctionIdent:Identifier ||

↪→ MemberExpression >>(<< someFunctionParam:
↪→ Expression >>);"

6 }
7
8 transform to {
9 "<<someFunctionParam >> |> <<someFunctionIdent >>(%);"

10 }
11 }
12
13 case TwoArgument{
14 applicable to {
15 "<<someFunctionIdent: Identifier ||

↪→ MemberExpression >>(<< someFunctionParam:
↪→ Expression >>, <<moreFunctionParam: Expression >>)"

16 }
17 transform to {
18 "<<someFunctionParam >> |> <<someFunctionIdent >>(%,

↪→ <<moreFunctionParam >>)"
19 }
20 }
21 }

Listing 3.2: Example of “Pipeline” proposal definition in JSTQL.

In the Listing ??, the first case definition SingleArgument will apply to any
CallExpression with a single argument. We do not write a CallExpression inside
a wildcard, as we have defined the structure of a CallExpression. The first wildcard
someFunctionIdent has the types of Identifier to match against single identifiers
and MemberExpression to match against functions who are members of objects, i.e.
console.log. In the transformation template, we define the structure of a function
call using the pipe operator, but the wildcards change order, so the argument passed as
argument someFunctionParam is placed on the left side of the pipe operator, and the
CallExpression is on the right, with the topic token as the argument. This case will
produce a match against all function calls with a single argument, and transform them
to use the pipe operator. The main difference of the second case TwoArgument is that
it matches against functions with exactly two arguments, and uses the first argument as
the left side of the pipe operator, while the second argument remains in the function call.
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3.3.2 “Do Expression” Proposal

The “Do Expression” proposal [? ] focuses on bringing expression-oriented programming
to JavaScript.

1 proposal DoExpression{
2 case arrowFunction{
3 applicable to {
4 "(() => {
5 <<statements: (Statement && !ReturnStatement)+>>
6 return <<returnVal : Expression >>;
7 })();"
8 }
9 transform to {

10 "(do {
11 <<statements >>
12 <<returnVal >>
13 })"
14 }
15 }
16
17 case unnamedFunction {
18 applicable to {
19 "(function (){
20 <<statements: (Statement && !ReturnStatement)+>>
21 return <<returnVal : Expression >>;
22 })();"
23 }
24
25 transform to {
26 "(do {
27 <<statements >>
28 <<returnVal >>
29 })"
30 }
31 }
32 }

Listing 3.3: Definition of Do Proposal in JSTQL.

In Listing ??, the specification of “Do Expression” proposal in JSTQL can be seen.
It has two cases: the first case arrowFunction applies to code using an immediately
invoked arrow function [? , 15.3] with a return value. The wildcard statements matches
against one or more statements that are not of type ReturnStatement. The reason we
limit the wildcard is we cannot match the final statement of the block to this wildcard,
as that has to be matched against the return statement in the template. The second
wildcard returnVal matches against any expressions; the reason for extracting the ex-
pression from the return statement, is to use it in the implicit return of the do block.
In the transformation template, we replace the arrow function with with a do expression.
This expression has to be defined inside parenthesis, as a free floating do expression is not
allowed due to ambiguous parsing against a do while statement. We insert the state-
ments matched against statements wildcard into the block of the do expression, and the
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final statement of the block is the expression matched against the returnVal wildcard.
This will transform an arrow function into a do expression.

The second case unnamedFunction follows the same principle as the first case, but is
applied to immediately invoked unnamed functions, and produces the exact same output
after the transformation as the first case. This is because immediately invoked unnamed
functions are equivalent to arrow functions.

3.3.3 “Await to promise” imaginary proposal

1 proposal awaitToPromise{
2 case single{
3 applicable to {
4 "let <<ident:Identifier >> = await <<awaitedExpr:

↪→ Expression >>;
5 <<statements: (Statement && !ReturnStatement &&

↪→ !ContinueStatement &&! BreakStatement)+>>
6 return <<returnExpr: Expression >>
7 "
8 }
9

10 transform to{
11 "return <<awaitedExpr >>.then(async <<ident >> => {
12 <<statements >>
13 return <<returnExpr >>
14 });"
15 }
16 }
17 }

Listing 3.4: Definition of “Await To Promise” evaluation proposal in JSTQL.

The specification of “Await To Promise” in JSTQL is specified to match asynchronous
code inside a function. It is limited to match asynchronous functions containing a single
await statement, and that await statement has to be stored in a VariableDeclaration.
The second wildcard statements is designed to match all statements following the await
statement up to the return statement. This is done to move the statements into the
callback function of then() in the transformation. We includeReturnStatement because
we do not want to consume the return as it would then be removed from the functions
scope and into the callback function of then(). We also have to avoid matching where
there exists loop specific statements such as ContinueStatement or BreakStatement.

The transformation definition has to use an async arrow function as argument for
then, as there might be more await expressions contained within statements.
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3.4 JSTQL-SH

In this thesis, we have also explored an alternative way of specifying syntactic proposals—
JSTQL-SH1—which effectively uses JavaScript as a meta-language.

In this approach, proposal specifications are written as JavaScript objects. Each
specification defines the following keys on the object:

• prelude, which is a sequence of JavaScript variable declarations, which are used to
define wildcards.

• applicableTo, which is the template to perform matching. Unlike the JSTQL tem-
plate specification, a corresponding JSTQL-SH specification is free of wildcards—for
that purpose, the variables introduced in the prelude are used.

• transformTo, which is the template that defines the transformation. Similarly to
the previous field, the value of this field is free of any wildcards; instead, a user can
refer to the variables defined in prelude that represent wildcards.

This example below represents the first case of the “Pipeline” proposal specification
(see Listing ?? for comparison).

1 {
2 prelude: ‘
3 let someFunctionIdent = "Identifier || MemberExpression";
4 let someFunctionParam = "Expression";
5 ‘,
6 applicableTo: "someFunctionIdent(someFunctionParam);",
7 transformTo: "someFunctionParam |> someFunctionIdent (%);"
8 }

JSTQL-SH provides an Application Programming Interface that exposes a function
that takes a JavaScript object that represents a proposal specification and a string that
represents the user code to which the proposal will be applied. This function then returns
the transformed source code.

The main benefit of this alternative approach is that an extraction of wildcards from
templates is not required. This means that a template is becomes a valid JavaScript code.
Using only JavaScript to define proposal specifications could lower the barrier for use of
our tool by the TC39 delegates and members of the JavaScript community, as being able
to experiment with a new proposal now becomes a matter of using a library function.

1“SH” stands for “self-hosted”, inspired by http://udn.realityripple.com/docs/Mozilla/
Projects/SpiderMonkey/Internals/self-hosting.
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Chapter 4

Implementation

In this chapter, the implementation of the tool utilizing the JSTQL and JSTQL-SH
will be presented.1 It will describe the overall architecture of the tool, the flow of data
throughout, and how the different stages of transforming user code are completed.

4.1 Architecture of the solution

As was presented in Section ??, there are two ways to specify a proposal: either using a
custom domain-specific language JSTQL, or by using the corresponding JavaScript API.
Figure ?? demonstrates the architecture of the implementation of these two approaches.
In the figure, ellipse nodes represent data passed into the tool, and rectangular nodes
represent specific components of the tool.

In the JSTQL approach (the “left-side” path in the figure), the initial step is to parse a
proposal specification and then to extract the wildcard declarations and references from
code templates. A corresponding step in the API-based approach (the “right-side” path)
is to build the prelude, where the wildcard definitions are “extracted” from JavaScript
code.

For both of the approaches, the second step (Section ??) is to parse wildcard type
expressions used in the templates’ specifications. After that, at step 3 (Section ??), Babel
is used to parse and build abstract syntax trees for the applicable to templates and

1The source code for this implementation can be found https://github.com/polsevev/JSTQL-JS-
Transform
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the transform to templates in a proposal specification, and the user’s code to which the
proposal will be applied. At step 4 (Section ??), we process the abstract syntax trees
produced by Babel and produce a custom tree data structure for simpler traversal. At
step 5 (Section ??), we match the user’s AST against the templates in the applicable

to blocks. Once all matches have been found, we incorporate the wildcard matches into
the transform to template at step 6 (Section ??), and insert it back into the users code.
At this point, the AST of the user’s code has been transformed, and the final step 7
(Section ??) then pretty-prints the transformed AST into a JavaScript source code.

2. Type Expression Parser

1. Prelude Builder

Self-Hosted Object

1.2. Extract wildcards

1.1. Parse JSTQL code

JSTQL Code

3. Babel parsingUser source code

4. Custom Tree builder

5. Matcher

6. Transformer

7. Generator

Figure 4.1: Overview of tool architecture
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4.2 Parsing JSTQL using Langium

In this section, we describe the implementation of the parser for JSTQL. We start with
outlining the language workbench which we used to generate a parser for JSTQL.

Langium [? ] is a language workbench [? ] that can be used to generate parsers for
software languages, in addition to producing a tailored Integrated Development Environ-
ment for the language.

A parser generated by Langium produces abstract syntax trees which are TypeScript
objects. These objects and their structure are used as definitions for the tool to do
matching and transformation of user code.

To generate a parser, Langium requires a definition of a grammar. A grammar is
a specification that describes syntax a valid programs in a language. The grammar for
JSTQL describes the structure of JSTQL specifications. The starting symbol of the
grammar represents valid specifications:

1 grammar Jstql
2
3 entry Model:
4 (proposals += Proposal)*;

In its turn, a proposal’s specification includes its name and a specification of at least
one transformation case.

1 Proposal:
2 ’proposal ’ name=ID "{"
3 (case+=Case)+
4 "}";

A transformation case specification is comprised of a code template to match a
JavaScript code to which the case is applicable, and a code template that specifies how
a match should be transformed.

1 Case:
2 "case" name=ID "{"
3 aplTo=ApplicableTo
4 traTo=TransformTo
5 "}";

Case specifications are designed in this way in order to separate different transformation
definitions within a single proposal.

An applicable to block specifies a JavaScript code template with wildcard decla-
rations. This code template is represented in the grammar using the terminal symbol
STRING, and will be thus parsed as a raw string of characters.
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1 ApplicableTo:
2 "applicable" "to" "{"
3 apl_to_code=STRING
4 "}";

The decision to use the STRING terminal, rather than a designated nonterminal symbol
that would represent valid JavaScript programs with wildcards, is motivated by two
reasons: (i) we separate parsing of the JSTQL specification structure (which is done by
Langium) and parsing of JavaScript code (for which we use Babel2); and (ii) we use a
custom processor of wildcards to enable reuse of such a processor for both JSTQL and
JSTQL-SH3.

A transform to block is specified in a similar manner:
1 TransformTo:
2 "transform" "to" "{"
3 transform_to_code=STRING
4 "}";

Notwithstanding the fact that the code templates in applicable to and transform

to blocks are treated as strings by Langium—and thus by the Visual Studio Extension
for JSTQL generated by Langium—we perform validation of the wildcard declarations
and references, as explained below.

Langium Validator

A Langium validator allows for further check to be applied to DSL code, a validator
allows for the implementation of specific checks on specific parts of the code.

JSTQL does not allow empty wildcard type expression definitions in applicable

to blocks. This is not defined within the grammar, and needs to be enforced with a
validator. Concretely, we have implemented a specific Validator for the Case rule of the
grammar. This means every time anything contained within a Case is updated, Langium
will perform the validation step and report any errors. The validator implemented for
our tool checks for the following errors: empty wildcard type expressions, undeclared
wildcards in transform to block, and wildcards used multiple times in transform to

block.

In the listing below is the validator, it performs checks on the applicable to block
and transform to block of the case. If any errors are found it reports them with the
function accept.

2See Sections ?? and ??.
3See Section ??.
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1 export class JstqlValidator {
2 validateWildcards(case_: Case , accept: ValidationAcceptor): void {
3 try {
4 let validationResultAplTo = validateWildcardAplTo(
5 collectWildcard(case_.aplTo.apl_to_code.split(""))
6 );
7 if (validationResultAplTo.errors.length != 0) {
8 accept("error",

↪→ validationResultAplTo.errors.join("\n"), {
9 node: case_.aplTo ,

10 property: "apl_to_code",
11 });
12 }
13
14 let validationResultTraTo = validateWildcardTraTo(
15 collectWildcard(case_.traTo.transform_to_code.split("")),
16 validationResultAplTo.env
17 );
18
19 if (validationResultTraTo.length != 0) {
20 accept("error", validationResultTraTo.join("\n"), {
21 node: case_.traTo ,
22 property: "transform_to_code",
23 });
24 }
25 } catch (e) {}
26 }
27 }

Interfacing with Langium

To use the parser generated by Langium, we have give our tool a way to interface with
Langium. To do this, we create a custom function that calls the generated parser on
some JSTQL code and transforms the AST into a JavaScript object compatible with our
tool.

4.3 Wildcard extraction and parsing

To refer to internal DSL variables defined in applicable to and transform to blocks
of the transformation, we need to extract this information from the template definitions.

Why not use Langium for wildcard extraction?

Langium supports creating a generator to output an artifact, which is some transforma-
tion applied to the AST built by the Langium parser. This would facilitate extraction of
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the wildcards, however this would make JSTQL-SH dependent on Langium. This is not
preferred as that would mean both ways of defining a proposal are reliant on Langium.
The reason for using our own extractor is to allow for an independent way to define
transformations using our tool.

Extracting wildcards from JSTQL

To parse the templates in applicable to blocks and transform to blocks, we have to
make the templates valid JavaScript. This is done by using a wildcard extractor that
extracts the information from the wildcards and inserts an Identifier in their place.

To extract the wildcards from the template, we look at each character in the template.
If a wildcard opening token is encountered, everything after that until the closing token
is treated as a wildcard definition or reference and will parsed using the wildcard parser.

Once the wildcard is parsed, and we know it is valid, we insert the identifier into
the JavaScript template where the wildcard would reside. This introduces a problem of
collisions between the wildcard identifiers inserted and identifiers present in the users
code. In order to avoid this, we prepend and append every identifier inserted in place of
a wildcard with the sequence of characters _$$_.
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In the Listing ?? the function used to extract the wildcards declarations can be seen.
This function iterates through each character of applicable to template (line 2). When
an opening token for a wildcard is encountered (line 3), we collect each character into a
separate variable until the closing token is encountered. This separate variable is passed
to the wildcard parser to create the type expression AST of the wildcard (lines 14-16).
We insert the collision avoidance characters into the wildcard (line 18), and insert the
identifier into cleanedJS (line 19).

1 export function parseInternal(code: string): InternalParseResult {
2 for (let i = 0; i < code.length; i++) {
3 if (code[i] === "<" && code[i + 1] === "<") {
4 // From now in we are inside of the DSL custom block
5 flag = true;
6 i += 1;
7 continue;
8 }
9

10 if (flag && code[i] === ">" && code[i + 1] === ">") {
11 // We encountered a closing tag
12 flag = false;
13 try{
14 let wildcard = new WildcardParser(
15 new WildcardTokenizer(temp).tokenize ()
16 ).parse();
17 wildcard.identifier.name =
18 "_$$_" + wildcard.identifier.name + "_$$_";
19 cleanedJS += wildcard.identifier.name;
20
21
22 prelude.push(wildcard);
23 i += 1;
24 temp = "";
25 continue;
26 }
27 catch (e){
28 // We probably encountered a bitshift operator , append

↪→ temp to cleanedJS
29 }
30
31 }
32 if (flag) {
33 temp += code[i];
34 } else {
35 cleanedJS += code[i];
36 }
37 }
38 return { prelude , cleanedJS };
39 }

Listing 4.1: Extracting wildcard from template.

Parsing wildcards Once a wildcard has been extracted from definitions inside JSTQL,
it has to be parsed into a simple AST to be used when matching against the wildcard.
This is accomplished by using a tokenizer and a recursive descent parser [? ].

Our tokenizer takes the contents of wildcard block template and splits it into tokens.
Given the straighforward grammar type expressions, there is no ambiguity is present with
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the tokens, thus making is easy to identify which character corresponds to which token.
The tokenizer adds a token type to the tokens, this is later used by the parser to determine
which nonterminal to use.

A recursive descent parser mimics the grammar of the language the parser is imple-
mented for: we define functions for handling each of the nonterminals.

1 Wildcard:
2 Identifier ":" MultipleMatch
3
4 MultipleMatch:
5 GroupExpr "+"
6 | TypeExpr
7
8 TypeExpr:
9 BinaryExpr

10 | UnaryExpr
11 | PrimitiveExpr
12
13 BinaryExpr:
14 TypeExpr { Operator TypeExpr }*
15
16 UnaryExpr:
17 UnaryOperator TypeExpr
18
19 PrimitiveExpr:
20 GroupExpr | Identifier
21
22 GroupExpr:
23 "(" TypeExpr ")"

Listing 4.2: Grammar of type expressions

The grammar of the type expressions used by the wildcards can be seen in Figure ??.

Building prelude in JSTQL-SH The self-hosted version JSTQL-SH also requires
some form of parsing to prepare the internal DSL environment.

To use JavaScript as the meta language, we define a prelude on the object used to
define the transformation case. This prelude is required to consist of several Variable
declaration statements, where the variable names are used as the internal DSL variables
and right-hand side expressions are strings that contain the type expression used to
determine a match for that specific wildcard.

We use Babel to generate the AST of the prelude definition; this allows us to get a
JavaScript object structure. Since the structure is strictly defined, we can expect every
statement of the program to be a variable declaration; otherwise we throw an error for
invalid prelude. Then the string value of each of the variable declarations is passed to
the same parser used for JSTQL wildcards.

The reason this is preferred is it allows us to avoid having to extract the wildcards
and inserting an Identifier into the template.
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4.4 Using Babel to parse

Allowing the tool to perform transformations of code requires the generation of an ab-
stract syntax trees from the user’s code, as well as the applicable to and transform

to blocks. This means parsing JavaScript into an AST; to do this we use Babel [? ].

The reason for choosing to use Babel is the fact that it supports very early-stage
JavaScript language proposals. Babel’s maintainers collaborate closely with the TC39
Committee in order to provide extensive support of experimental syntax [? ] through
its plugin system. This allows the parsing of JavaScript code that uses language features
which are not yet part of the language standard.

Custom Tree Structure

The AST structure used by Babel does not suit traversing multiple trees at the same
time, which is a requirement for matching. Therefore, based on Babel’s AST, we produce
our own custom tree structure that allows for simple traversal of multiple trees at once.

As can be seen in Figure ??, we use a recursive definition of a TreeNode, where a
node’s parent either exists or is null (the root), and a node can have any number of child
elements. This definition allows for simple traversal both up and down the tree. This
means traversing two trees at the same time can be done when searching for matches in
the user’s code.

1 export class TreeNode <T> {
2 public parent: TreeNode <T> | null;
3 public element: T;
4 public children: TreeNode <T>[] = [];
5
6 constructor(parent: TreeNode <T> | null , element: T) {
7 this.parent = parent;
8 this.element = element;
9 if (this.parent) this.parent.children.push(this);

10 }
11 }

Listing 4.3: Simple definition of a Tree structure in TypeScript

To place the AST into our tree structure, we use @babel/traverse [? ] to visit each
node of the AST in a depth first manner. We implement a visitor for each of the nodes in
the AST and when a specific node is encountered, the corresponding visitor of that node
is used to visit it. When transferring the AST into our simple tree structure, we use a
generic visitor that applies to every kind of AST node, and place that node into the tree.
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Visiting a node using the enter() function means we traversed from a parent node
to its child node. When we then initialize the TreeNode of the current child, we add
the parent previously visited as its parent node. Whenever leaving a node the function
exit() is called, this means we are moving back up the tree, and we have to update what
node was the last visited to keep track of the correct parent.

In the example below is the algorithm that transforms the Babel AST into our custom
tree structure. We start by defining a variable last (line 1), this variable will keep track
of the previous node we visited. When the visitor enters a new node, the function enter

is called (line 3). This function creates a new node in our custom tree structure (lines
4-6), and sets its parent to the previous node visited (line 5). Once our new node has
been created, we update last to point to our new node (line 8).

Every time we walk back up the tree, the function exit (line 10) is called. Whenever
this happens, we have to update last such that it will always contain the parent of a
node when we visit it (line 11).

1 let last = 0;
2 traverse(ast , {
3 enter(path: any) {
4 let node: TreeNode <t.Node > = new TreeNode <t.Node >(
5 last ,
6 path.node as t.Node
7 );
8 last = node;
9 },

10 exit(path: any) {
11 last = last.parent;
12 },
13 });
14 if (first != null) {
15 return first;
16 }

One important nuance of the way we place the nodes into the tree is that we still
have the same underlying data structure as Babel. Because of this, the nodes can still be
used with Babel APIs, and we can still access every field of each node. Transforming it
into a tree only creates an easy way to traverse up and down the tree by references. We
perform no changes of the underlying data structure.

4.5 Outline of transforming user code

Below is an outline of every major step performed, and how data is passed through the
program.
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Algorithm 1 An outline of the steps to perform the transformation. Here: A denotes
the applicable to template with wildcards extracted, B denotes the transform to
template with wildcards extracted, W denotes extracted wildcards, C denotes the ab-
stract syntax tree of the applicable to template, D denotes the abstract syntax tree of the
transform to template, E denotes the abstract syntax tree of the user’s code, F denotes
the applicable to template in our custom tree structure, G denotes the transform to
template in our custom tree structure, H denotes the user code in our custom tree struc-
ture, J denotes an array of all the found matches, K denotes an array that contains all
transform to templates with context from user code inserted, L denotes the abstract
syntax tree of the transformed user code, and SourceCode is the transformed user code
pretty-printed as JavaScript.
1: A,B,W ← extractWildcards()
2: C,D,E ← babel.parse(A,B, UserCode)
3: F,G,H ← Tree(C,D,E)
4: if F.length > 1 then
5: J ← multiMatcher(F,E,W )
6: else
7: J ← singleMatcher(F,E,W )
8: end if
9: K ← [] ▷ Array of transformed code

10: for each m in J do
11: K.insert← buildTransform(m,G,W )
12: end for
13: L← insertTransformations(K)
14: SourceCode← babel.generate(L)

Each part of Algorithm ?? is a step to transform user code based on a proposal
specification in our tool.

In the initial of the algorithm (line 1), the wildcards are extracted from the templates
applicable to and transform to, and replaced by identifiers. The extracted wildcards
are then parsed into ASTs using a parser built into the tool.

We parse the applicable to template, transform to template and the user’s code
into ASTs with Babel (line 2). These ASTs are immediately translated into our custom
tree structure (line 3). This ensures simple traversal of multiple trees.

To decide which matching algorithm we apply, the length of the applicable to

template is checked (line 5), if it is more than one statement long we use multiMatcher

(line 5), if it is a single statement we use singleMatcher (line 7). These algorithms will
find all matching parts of the user AST to the applicable to template.
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We use these matches to prepare the transform to templates (lines 9-12). The
AST nodes from the user code that was matched with a wildcard is inserted into the
wildcard references present in the transform to template (line 11). All the transformed
transform to templates are stored in a list(line 9, 11).

Once all transformations are prepared, we traverse the user AST (line 13), and insert
the transformations where their corresponding match originated. The final step, is to
generate JavaScript from the transformed AST (line 14).

4.6 Matching

This section discusses how we find matches in the users code; this is the step described
in lines 4-8 of Listing ??. We will discuss how individual nodes are compared, how the
two traversal algorithms are implemented, and how matches are discovered using these
algorithms.

4.6.1 Determining if AST nodes match

To determine if two nodes are a match, we need some method to compare AST nodes
of the applicable to template to AST nodes of the user code. This step also has to
take into account comparisons with wildcards and pass that information back to the AST
matching algorithms.

When comparing two AST nodes in this tool, we use the function checkCodeNode,
which will give the following values based on what kind of match these two nodes produce.

NoMatch The nodes do not match.

Matched The nodes are a match, and the node of applicable to is not a wildcard.

MatchedWithWildcard The nodes are a match, and the node of applicble to is a
wildcard.

MatchedWithPlussedWildcard The nodes are a match, and the node of applicable
to is a wildcard with the Kleene plus.
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To compare two AST nodes, we start by comparing their types, if the types are not
the same, the result is NoMatch. If the types are the same, further checks are required.

Firstly we need to determine if the current AST node of applicable to is a wildcard.
To do this, we check if its type is either an Identifier or an ExpressionStatement

with an Identifier as its expression. During the wildcard extraction step, we replace
the wildcard with an identifier. As a result, an identifier might be placed as a statement.
When this occurs, the identifier will be wrapped inside an ExpressionStatement. If we
encounter either of these two types, we must then check if the name of the identifier
matches the name of a wildcard. If it does, we evaluate the type of the user AST node
against the wildcards type expression.

In the example below we determine if the node of applicable to might be a wildcard
1 if(( aplToNode.type === "ExpressionStatement" &&
2 aplToNode.expression.type === "Identifier") ||
3 aplToNode.type === "Identifier"){
4
5 // Check if aplToNode is a wildcard
6 }

If we have determined the node of applicable to is not a wildcard, we then compare
the two nodes to see if they match. For certain nodes, like Identifier, this involves
explicitly checking specific fields, such as comparing the name field. For most nodes,
however, we compare their types. Based on this comparison, the result will be either
Match or NoMatch.

When comparing an AST node type against a wildcard type expression, we evaluate
the wildcard type expression relative to the type of the node being compared. This
evaluation employs the visitor pattern to traverse the AST, where each leaf node is
checked against the type of the node being compared, yielding a Boolean result. All
expressions are subsequently evaluated, with the values passed through the visitors until
the entire expression is evaluated, producing a final result. If the evaluation result is
false, we return NoMatch. If the evaluation result is true, we have to check if the
wildcard uses a Kleene plus, if it does we return MatchedWithPlussedWildcard, if it
does not we retrun MatchedWithWildcard.

4.6.2 Matching a single Expression/Statement template

In this section, we discuss how matching is performed when the applicable to template
is a single expression/statement. This section will cover line 7 of Listing ??.
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Determining if we are currently matching with a template that is only a single expres-
sion/statement, we must verify that the program body of the template has the length of
one, if this is the case we use the single length traversal algorithm.

There is a special case when the template is a single expression. When this is the
case, the first node of the AST generated by @babel/generate [? ] will be of type
ExpressionStatement. This will miss many applicable parts of the users code, because
expressions within other statements are not wrapped in an ExpressionStatement. This
makes the template incompatible with otherwise applicable expressions. This means the
statement has to be removed, and the search has to be done with the expression as the
top node of the template.

Discovering Matches Recursively The matching algorithm used with single ex-
pression/statement templates is based on depth-first search to traverse the trees. The
algorithm can be split into two steps. The first step is to start a new search on each child
of the current node explored, and the second is the check the current node for a match.

The first step is to ensure we search for a match at all levels of the code AST. This is
done by starting a new search on every child node of the code AST if the current node
of the applicable to AST is the root node. This ensures we have explored a match
at every level of the tree. As an added benefit of this approach is it ensures we have
no partial matches, as we store a match only if it was called with the root node of the
applicable to AST. This behaviour can be seen in the listing below.

1 if(aplTo.element === this.aplToRoot){
2 // Start a search from root of aplTo on all child nodes
3 for(let codeChild of code.children){
4 let childMatch = singleMatcher(codeChild , aplTo);
5
6 // If it is a match , we know it is a full match and store it.
7 if(childMatch){
8 this.matches.push(childMatch);
9 }

10 }
11 }

The second step is to compare the nodes of the current search. This means the current
code AST node is compared against the current applicable to AST node. Based on
this comparison, different steps must be performed, these steps can be seen below.

NoMatch: If a comparison between the nodes return a NoMatch result, we perform an
early return of undefined, as no match was discovered.
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Matched: The current code node matches against the current node of the template, and
we have to perform a search on each of the child nodes.

MatchedWithWildcard: When a comparison results in a wildcard match, we immedi-
ately pair the current code node with the template wildcard and return early. This
is possible because, once a wildcard matches, the child nodes are irrelevant and will
be included in the transformation regardless.

MatchedWithPlussedWildcard: This is a special case for a wildcard match. When
a match occurs against a wildcard with a Kleene plus we do the same as
MatchedWithWildcard, but give a different comparison result as this necessitates a
special traversal of the current nodes siblings.

A comparison result of Matched means the two nodes match, but the applicable to

node is not a wildcard. If this is the case, we perform a search on each child nodes of
applicable to AST and the user AST. This can be seen in Listing ??.

When checking the child nodes, we have to check for a special case when the com-
parison of the child nodes result in MatchedWithPlussedWildcard. If this result is en-
countered, we have to continue matching the same applicable to node against each
subsequent sibling node of the code node. This is because, a wildcard with a Kleene plus
can match against multiple sibling nodes.

In the Listing ?? below, we search the children of a comparison that returned the
result Match. For this, we use a two pointer technique with codeI and aplToI (lines 1,2).
This search continues until one of the pointers reaches the end of the list of children for
its respective node (line 4). If any of the child nodes to not return a match the entire
match is discarded (lines 8-10). We prepare the paired tree by appending the current
child search to the parent pair (line 14,15). We handle the special case with a Kleene
plus (line 18), by continuing the search with the same aplToI pointer while incrementing
codeI (lines 19-22). As long as the result is MatchedWithPlussedWildcard we add the
node matched with the wildcard to the pair of matches, meaning the pair will contain
multiple nodes from the user AST matched with the same wildcard (line 28). If the
result is not MatchedWithPlussedWildcard, we decrement codeI, stop the comparisons
against the wildcard, and continue searching all the child nodes as normal(lines 23-26).
When one of the child lists is completely searched, we check if it is a full match of all the
child nodes of the current code AST parent by verifying that we reached the end of the
code AST children (lines 39-41). Once all these searches have been completed, and we
confirm a Match, we return the paired tree structure along with match result.
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1 let codeI = 0;
2 let aplToI = 0;
3
4 while (aplToI < aplTo.children.length && codeI < code.children.length){
5 let [pairedChild , childResult] =

↪→ singleMatcher(code.children[codeI], aplTo.children[aplToI ]);
6
7 // If a child does not match , the entire match is discarded
8 if(childResult === NoMatch){
9 return [undefined , NoMatch ];

10 }
11
12
13 // Add the match to the current Paired Tree structure
14 pairedChild.parent = currentPair;
15 currentPair.children.push(pairedChild);
16
17 // Special case for Kleene plus wildcard match
18 if(childResult === MatchedWithPlussedWildcard){
19 codeI += 1;
20 while(codeI < code.children.length){
21 let [nextChild , plusChildResult] =

↪→ singleMatcher(code.children[codeI],
↪→ aplTo.children[aplToI ]);

22
23 if(plusChildResult !== MatchedWithPlussedWildcard){
24 codeI -= 1;
25 break;
26 }
27
28 pairedChild.element.codeNode.push(
29 ... nextChild.element.codeNode);
30
31 codeI += 1;
32 }
33 }
34
35 codeI += 1;
36 aplToi += 1;
37 }
38
39 if(codeI !== code.children.length){
40 return [undefined , NoMatch]
41 }
42
43 return [currentPair , Match ];

Listing 4.4: Pseudocode of child node matching

4.6.3 Matching multiple statements

Using multiple statements in the template of applicable to means the tree of
applicable to as multiple root nodes, to perform a match with this kind of template,
we use a sliding window [? ] with size equal to the amount statements in the template.
This window is applied at every BlockStatement and Program of the code AST, as that
is the only placement statements can reside in JavaScript [? , 14].
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The initial step of this algorithm is to search through the AST for nodes that contain
a list of Statements. Searching the tree is done by depth-first search, at every level of the
AST, we check the type of the node. Once a node of type BlockStatement or Program

is encountered, we start the trying to match the statements.
1 multiStatementMatcher(code , aplTo) {
2 if (
3 code.element.type === "Program" ||
4 code.element.type === "BlockStatement"
5 ) {
6 matchMultiHead(code.children , aplTo.children);
7 }
8
9 for (let code_child of code.children) {

10 multiStatementMatcher(code_child , aplTo);
11 }
12 }

matchMultiHead uses a sliding window [? ]. The sliding window will try to match
every statement of the code AST against its corresponding statement in the applicable

to AST. For every statement, we perform a DFS recursion algorithm is applied, similar
to algorithm used in Section ??, however this search is not applied to all levels, and if
it matches it has to match fully and immediately. If a match is not found, the current
iteration of the sliding window is discarded and we move on to the next iteration by
moving the window one further.

One important case here is we might not know the width of the sliding window, this
is due to wildcards using the Kleene plus, as they can match one or more nodes against
the wildcard. These wildcards might match against (Statement)+. Therefore, we use
a similar technique to the one described in Section ??, where we have two pointers and
perform a search based on the value of these pointers.

Output of the matcher

The matches discovered have to be stored such that we can easily find all the nodes
that were matched against wildcards and transfer them into the transformation later. To
make this simpler, we make use an object PairedNodes. This object allows us to easily
find exactly what nodes were matched against each other. The matcher will place this
object into the same tree structure described in ??. This means the result of running the
matcher on the user code is a list of TreeNode<PairedNode>.

1 interface PairedNode{
2 codeNode: t.Node[],
3 aplToNode: t.Node
4 }
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Since a match might be multiple statements, we use an interface Match, that contains
separate tree structures of PairedNodes. This allows storage of a match with multiple
root nodes. This is used by matchMultiHead.

1 export interface Match {
2 // Every matching Statement in order with each pair
3 statements: TreeNode <PairedNodes >[];
4 }

4.7 Transforming

To perform the transformation and replacement on each of the matches, we take the
resulting list of matches, the template from the transform to, and the Babel AST [? ]
version of original code. All the transformations are then applied to the code and we use
@babel/generate [? ] to generate JavaScript code from the transformed AST.

An important note is we have to ensure we transform the leaves of the AST first,
this is because if the transformation was applied from top to bottom, it might remove
transformations done using a previous match. This means if we transform from top to
bottom on the tree, we might end up with a(b) |> c(%) in stead of b |> a(%) |>

c(%) in the case of the “Pipeline” proposal. This is quite easily solved in our case, as the
matcher looks for matches from the top of the tree to the bottom of the tree, the matches
it discovers are always in that order. Therefore when transforming, all that has to be
done is reverse the list of matches, to get the ones closest to the leaves of the tree first.
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Building the transformation

Before we can start to insert the transform to section into the user’s code AST. We
have to insert all nodes matched against a wildcard in applicable to into their reference
locations.

The first step to achieve this is to extract the wildcards from the match tree. This is
done by recursively searching the match tree for an Identifier or ExpressionStatement
containing an Identifier. To do this, we have a function extractWildcardPairs, which
takes a single match, and extracts all wildcards and places them into a Map<string,

t.Node[]>. Where the key of the map is the identifier used for the wildcard, and the
value is the AST nodes the wildcard was matched against in the users code.

1 function extractWildcardPairs(match: Match): Map <string , t.Node[]> {
2 let map: Map <string , t.Node[]> = new Map();
3
4 function recursiveSearch(node: TreeNode <PairedNodes >) {
5 let name: null | string = null;
6 if (node.element.aplToNode.type === "Identifier") {
7 name = node.element.aplToNode.name;
8 } else if (
9 // Node is ExpressionStatement with Identifier

10 ) {
11 name = node.element.aplToNode.expression.name;
12 }
13
14 if (name) {
15 // Store in the map
16 map.set(name , node.element.codeNode);
17 }
18 // Recursively search the child nodes
19 for (let child of node.children) {
20 recursiveSearch(child);
21 }
22 }
23 // Start the initial search
24 for (let stmt of match.statements) {
25 recursiveSearch(stmt);
26 }
27 return map;
28 }

Listing 4.5: Extracting wildcard from match

Once the full map of all wildcards has been built, we have to insert the node matched
with the wildcard into the transform to template. To do this, we traverse the template
with @babel/traverse [? ], as this provides us with a powerful API for modifying the
AST. @babel/traverse allows us to define visitors, that are executed when traversing
specific types of AST nodes. In this traversal, we define a visitor for Identifier, and a
visitor for ExpressionStatement.

When we visit a node with these visitors, we check if that nodes name is in the map
of wildcards. If the name of the identifier is a key in the wildcard map, we replace
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the identifier with the value in the map, which is AST nodes from the user’s code that
matched with that wildcard. See Listing ??

1 traverse(transformTo , {
2 Identifier: (path) => {
3 if (wildcardMatches.has(path.node.name)) {
4 let toReplaceWith =

↪→ wildcardMatches.get(path.node.name);
5 if (toReplaceWith) {
6 path.replaceWithMultiple(toReplaceWith);
7 }
8 }
9 },

10 ExpressionStatement: (path) => {
11 if (path.node.expression.type === "Identifier") {
12 let name = path.node.expression.name;
13 if (wildcardMatches.has(name)) {
14 let toReplaceWith = wildcardMatches.get(name);
15 if (toReplaceWith) {
16 path.replaceWithMultiple(toReplaceWith);
17 }
18 }
19 }
20 },
21 });

Listing 4.6: Traversing transform to AST and inserting user context

Due to some wildcards allowing matching of multiple sibling nodes, we have to use
replaceWithMultiple when performing the replacement. This can be seen on line 6 and
16 of Listing ??.

Inserting the template into the AST

We have now created the transform to template with the user’s context. This has to
be inserted into the full AST definition of the users code. To do this we have to locate
exactly where in the user AST this match originated. To perform this efficiently, we use
this top node as the key to a Map, so if a node in the user AST exists in that map, we
know it was matched and should be replaced.

1 transformedTransformTo.set(
2 match.statements [0]. element.codeNode [0],
3 [
4 transformMatchFaster(wildcardMatches , traToWithWildcards),
5 match ,
6 ]
7 );

We now traverse the AST generated from the users code with @babel/traverse. In
this case we cannot use a specific visitor, and therefore we use a generic visitor that
applies to every node type of the AST. If the current node we are visiting is a key to the
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map of transformations created earlier, we know we have to insert the transformed code.
This is done similarly to before where we use replaceWithMultiple.

Some matches have multiple root nodes. This is likely when matching was done with
multiple statements as top nodes. This means we have to remove n-1 following sibling
nodes. Removal of these sibling nodes can be seen on lines 12-15 of Listing ??.

1 traverse(codeAST , {
2 enter(path) {
3 if (transformedTransformTo.has(path.node)) {
4 let [traToWithWildcards , match] =
5 transformedTransformTo.get(path.node) as [
6 t.File ,
7 Match
8 ];
9 path.replaceWithMultiple(

10 traToWithWildcards.program.body);
11
12 let siblings = path.getAllNextSiblings ();
13
14 // For multi line applicable to
15 for (let i = 0; i < match.statements.length - 1; i++) {
16 siblings[i]. remove ();
17 }
18
19 // When we have matched top statements with +, we

↪→ might have to remove more siblings
20 for (let matchStmt of match.statements) {
21 for (let codeStmt of matchStmt.element
22 .codeNode) {
23 let siblingnodes = siblings.map((a) => a.node);
24 if (siblingnodes.includes(codeStmt)) {
25 let index = siblingnodes.indexOf(codeStmt);
26 siblings[index]. remove ();
27 }
28 }
29 }
30 }
31 },
32 });

Listing 4.7: Inserting transformed matches into user code

There is a special case when a wildcard with a Kleene plus, allowing the match of
multiple siblings, means we might have more siblings to remove. In this case, it is not so
simple to know exactly how many we have to remove. Therefore, we have to iterate over
all statements of the match, and check if that statement is still a sibling of the current
one being replace. This behavior can be seen on lines 20-29 of Listing ??.

After one full traversal of the user AST. All matches found have been replaced with
their respective transformation. All that remains is generating JavaScript from the trans-
formed AST.
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4.7.1 Generating source code from transformed AST

To generate JavaScript from the transformed AST created by this tool, we use a
JavaScript library titled @babel/generator [? ]. This library is specifically designed
for use with Babel to generate JavaScript from a Babel AST. The transformed AST defi-
nition of the users code is transformed, while being careful to apply all Babel plugins the
current proposal might require.
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Chapter 5

Evaluation

In this chapter we will present the results of running each of the proposals discussed in
this thesis on large-scale JavaScript projects.

To evaluate this tool on existing JavaScript codebases, we have collected JavaScript
projects from Github containing many or large JavaScript files.

Each case study was evaluated by running this tool on every .js-file in the repository,
and then collecting the number of matches found in total, and how many files were
successfully searched. Evaluating if the transformation was correct is done by manually
sampling output files, and verifying that it passes through Babel Generate [? ] without
errors.

We describe below our results and observations on using our tool on the codebases of
various large-scale projects that use JavaScript.

Next.js [? ] is one of the largest projects on the web. It is used with React [? ] to
enable feature such as server-side rendering and static site generation.

Proposal Matches found Files with matches Files processed
“Pipeline” 242079 1912 3340

“Do Expression” 229 37 3340
Await to Promise 8 7 3340

Table 5.1: Evaluation with Next.js source code
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Three.js [? ] is a library for 3D rendering in JavaScript. It is written purely in
JavaScript and uses GPU for 3D calculations.

Proposal Matches found Files with matches Files searched
Pipeline 84803 1117 1384

“Do Expression” 248 36 1384
Await to Promise 13 7 1384

Table 5.2: Evaluation with Three.js source code

React [? ] is a graphical user interface library for JavaScript, which facilitates
the creation of user interfaces for both web and native platforms. React is based upon
splitting a user interface into components for simple development. It is currently one of
the most popular libraries for creating web apps.

Proposal Matches found Files with matches Files searched
“Pipeline” 16353 1266 2051

“Do Expression” 0 0 2051
Await to Promise 30 13 2051

Table 5.3: Evaluation with React source code

Bootstrap [? ] is a front-end framework used for creating responsive and mobile-
first websites, and it comes with a variety of built-in components. This library is a good
evaluation point for this thesis as it is written in “vanilla” JavaScript.

Proposal Matches found Files with matches Files searched
"“Pipeline” 13794 109 115

“Do Expression” 0 0 115
Await to Promise 0 0 115

Table 5.4: Evaluation with Bootstrap source code

Atom [? ] is a text editor developed in JavaScript.
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Proposal Matches found Files with matches Files searched
“Pipeline” 40606 361 401

“Do Expression” 3 3 401
Await to Promise 12 7 401

Table 5.5: Evaluation with Atom source code

The “Pipeline” proposal is applicable to most files: the reason for this is that call
expressions are widely used when writing JavaScript code. Our tool found matches in
most files that Babel [? ] managed to parse, and with manual evaluation transformations
were performed correctly.

The “Do Expression” proposal is not as “applicable” as the “Pipeline” proposal: this
means that the amount of transformed code this specification in JSTQL will be able to
perform is expected and proven to be lower. This is because the proposal introduces an
entirely new way of writing expression-oriented code in JavaScript. If the code has not
used the current way of writing expression-oriented in JavaScript, JSTQL is limited in
the amount of transformations it can perform. Nevertheless, our tool is able to identify
matches where it is applicable, and by manual verification transformations are correct.

The imaginary “Await to promise” proposal also has an “expected” number of matches;
however, we do not evaluate this proposal since it is not an official TC39 proposal.

Our tool demonstrates its capability to perform searches on large codebases, to identify
applicable code for proposals, and to transform the code. As can be seen from the
tables above, some of the proposals found zero matches when evaluated on some of these
codebases. This is due to the fact that the developers of these projects have not used
the language construct the proposal is targeting. Because of this, no transformations
can be performed. This is especially apparent with the “Do Expression“ proposal, but
also with the “Await to Promise” imaginary proposal. This means that our tool’s ability
to perform transformations depends on how widespread the adoption of the language
construct targeted in a proposal is. We can hypothesize that the amount of matches
reflects the “impact” that design decisions made by the TC39 committee might have on
established JavaScript projects and codebases.

We give examples of some of the transformations performed on these codebases in
Appendix ??.
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Chapter 6

Related Work

In this chapter, we discuss various techniques and languages for code querying, present
approaches to tree manipulation and transformation, and describe several JavaScript
parsers. We also discuss aspect-oriented programming and model-driven language engi-
neering.

6.1 Source code query languages

To allow for simple analysis and refactoring of code, there exist many query languages
designed to query source code. These languages use various techniques to allow for
querying code based on specific paradigms (such as: logical queries, declarative queries,
SQL-like queries, etc.).

6.1.1 CodeQL

CodeQL [? ] is an object-oriented query language, previously known as .QL. CodeQL
is used to semantically analyze code to discover vulnerabilities [? ]. The language is
inspired [? ] by SQL [? ], Datalog [? ], Eindhoven Quantifier Notation [? ], and classes
are predicates [? ].

An example [? ] of how queries are written in CodeQL is as follows.
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1 from Class c
2 where c.declaresMethod("equals") and
3 not(c.declaresMethod("hashCode")) and
4 c.fromSource ()
5 select c.getPackage (), c

This query will find all class that have method equals, but do not have method hashCode.

As can be seen from this example, the SQL-like syntax of writing queries in CodeQL is
substantially different from JSTQL, which aims at a more declarative syntax. This makes
the writing experience of the two languages very different: writing CodeQL queries are
similar to querying a database, while queries written in JSTQL are similar to defining an
example of the structure one wishes to search for.

6.1.2 PMD XPath

PMD XPath is a language for Java source code querying, This language supports querying
of all Java constructs [? ]. The reason it has this wide support is due to it construct-
ing the entire codebase’s AST in XML format, and then performing the query on the
corresponding XML. These queries are performed using XPath expressions that define
matching on XML trees. This makes the query language versatile for static code analysis,
and it is used in the PMD static code analysis tool [? ].

An example [? ] PMD XPath queries are as follows.
1 // VariableId[@Name = "bill"]
2 // VariableId[@Name = "bill" and ../../ Type[@TypeImage = "short "]]

This query can be applied, for example, to the following Java code [? ]:
1 public class KeepingItSerious{
2 Delegator bill; // FieldDeclaration
3
4 public void method (){
5 short bill; // LocalVariableDeclaration
6 }
7 }

If we execute the queries on this code, the first query will match against the field decla-
ration Delegator bill and short bill, while the second query will only return short

bill. The reason the second limits the search is that we define the type of the declaration.

JSTQL uses JavaScript code templates to specify queries; this supposedly makes writ-
ing such queries simpler for users as they write JavaScript. In its turn, PMD XPath uses
XPath expressions to perform define structural queries that is quite verbose, and requires
extended knowledge of the AST that is currently being queried.
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6.1.3 XSL Transformations

XSLT [? ] is a language for performing transformations of XML documents, either to
other XML documents, or to different formats altogether (such as HTML or plain text).

XSLT is part of Extensible Stylesheets Language family of programs. The XSL lan-
guage is expressed in the form of a stylesheet [? , Sect. 1.1], whose syntax is defined
in XML. This language uses a template based approach to define matches on specific
patterns in the source to find sections to transform. These transformations are defined
by a transformation declaration that describes how the output of the match should look.

The example XML document represents a program, where each node variable has
an attribute name.

1 <program >
2 <variable name="a"/>
3 <variable name="b"/>
4 <variable name="c"/>
5 </program >

To transform the example above, we define a transformation in XSLT seen below.
This transformation contains two match templates; the first template matches nodes
program, this template copies the node in the transformation with xsl:copy and applies
the second transformation to all child nodes. The second transformation matches element
person, it defines a transformation that changes node from variable to const.

1 <xsl:stylesheet version="1.0"
2 xmlns:xsl="http ://www.w3.org /1999/ XSL/Transform">
3 <xsl:output method="xml" indent="yes"/>
4
5 <xsl:template match="/program">
6 <xsl:copy >
7 <xsl:apply -templates select="variable"/>
8 </xsl:copy >
9 </xsl:template >

10
11 <xsl:template match="variable">
12 <const name="{@name}"/>
13 </xsl:template >
14 </xsl:stylesheet >

The result of running the XSLT transformation above on the XML we defined is shown
below.

1 <program >
2 <const name="a"/>
3 <const name="b"/>
4 <const name="c"/>
5 </program >
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Though XSLT defines matching in a manner similar to JSTQL, its approach to define
transformations is different: JSTQL allows the user to specify a code fragment interspliced
with wildcards, while XSLT requires specifying a transformation (written in a functional
style). Moreover, JSTQL’s implementation is tailored for the use by the TC39 committee,
while XSLT’s expressive power allows specifying arbitrary complex transformations of
tree-like data structures.

6.1.4 Jackpot

Jackpot [? ] (also known as Java Declarative Hints Language) is a query language that
uses declarative patterns to define source code queries: these queries are used in conjunc-
tion with multiple rewrite definitions. The language is used in the Apache Netbeans [? ]
suite of tools to allow for declarative refactoring of code.

The example of a query and transformation below queries the code for variable dec-
larations with initial value of 1, and then changes them into a declaration with initial
value of 0.

1 "change declarations of 1 to declarations of 0":
2 int $1 = 1;
3 => int $1 = 0

Jackpot is quite similar to JSTQL, as both languages define queries by using similar
structure. In Jackpot, one defines a pattern, and then every match of that pattern can
be re-written to a fix-pattern. Each fix-pattern can have a condition attached to it. This
is quite similar to the applicable to and transform to sections of JSTQL. Jackpot also
supports a feature which is similar to the wildcards in JSTQL—one can define variables
in the pattern definition and transfer them over to the fix-pattern definition. In constant
to JSTQL, wildcard type restrictions and notation for matching more than one AST node
are not supported in Jackpot.

6.2 IntelliJ structural search

JetBrains IntelliJ-based Integrated Development Environments have a feature that allows
for structural search and replace [? ]. This feature is intended for large code bases where
a developer wishes to perform a search and replace based on syntax and semantics, and
not a (regular) text based search and replace.
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When doing structural search in IntelliJ-based IDEs, templates are used to describe
the query used in the search. These templates use variables described with $variable$;
these allow for transferring context to the structural replace.

In the figure below we perform a structured search for a method declaration with three
parameters of type int, and replace it with a method declaration where all parameters
are of type double and the return type is double.

Figure 6.1: Example of Intellij structural search and replace

This tool is interactive, and every match is showcased in the Find tool. In this tool,
a developer can decide which matches to apply the replace template to. This allows for
error avoidance and a stricter search that is verified by humans. If the developer wishes
so, they do not have to verify each match and can replace all matches at once.

IntelliJ structured search and replace and JSTQL have similarities: they both are
template-based. In both approaches, templates can contain variables and wildcards to
allow for matching against arbitrary code. Both tools also support matching multiple code
parts against a single variable or a wildcard. A core difference between the two tools is
the variable type system: when performing a match and transformation in JSTQL, the
types are used extensively to limit the match against the wildcards, while this limitation
is not possible in IntelliJ.

54



6.3 JavaScript parsers

This section will explore other JavaScript parsers that could have been used in this
project. We will give a brief introduction of each of them, and discuss why they were not
chosen.

Speedy Web Compiler

Speedy Web Compiler [? ] (SWC) is a library created for parsing and compiling
JavaScript and other dialects (such as JSX and TypeScript). It is written in Rust and
is known for its improved performance. SWC is used by large organizations creating
applications and tooling for the web platform.

Speedy Web Compiler supports various features, such as: compilation (used for Type-
Script and other languages that are compiled down to JavaScript), bundling (which takes
multiple JavaScript/TypeScript files and bundles them into a single output file, while han-
dling naming collisions), minification (that makes the bundle size of a project smaller,
transforming for use with WebAssembly), as well as custom plugins (to change the spec-
ification of the languages parsed by SWC).

SWC was considered to be used in this project, however due to SWC only supporting
proposals when they reach stage 3, it was not possible to use this parser.

Acorn

Acorn [? ] is parser written in JavaScript to parse JavaScript and related languages.
Acorn focuses on plugin support to support extending and redefinition of how its internal
parser works. Acorn focuses on being a small and performant JavaScript parser, and has
a custom tree traversal library Acorn Walk. Babel is originally a fork of Acorn, and while
Babel has since had a full rewrite, Babel is still heavily based on Acorn [? ].

Acorn was considered as a parser in this project, however it does not have the same
wide community as Babel, and does not have the same recommendation from TC39 as
Babel does [? ]. Even though it supports plugins and the plugin system is powerful, there
does not exist the same amount of pre-made plugins for early stage proposals as Babel
has.
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6.4 Model-to-Model Transformations

Model-to-Model transformations are an integral part of model-driven engineering (MDE),
which is a methodology that focuses on the creation and modification of abstract models
rather than focusing on executable code [? ]. This methodology provides a higher-level
approach to developing large software systems.

The process of performing a model-to-model transformation is to convert one model
into another, while preserving or adapting its underlying semantics and structure [? ].
This is usually done by traversing its structure, and extracting data and transforming
its format to fit the model it should be transformed into. This allows a model described
within one domain to be transformed into another automatically.

6.5 Aspect-Oriented Programming

Aspect-Oriented Programming [? ] (AOP) s a programming paradigm that enables
modularity by allowing for a high degree of separation of concerns, specifically focusing
on cross-cutting concerns. Cross-cutting concerns are aspects of a software program
or a system that have an effect at multiple levels, cutting across the main functional
requirements. Such aspects are often related to security, logging, or error handling, but
could be any concern that are shared across an application.

In AOP, one creates an aspect, which is a module that contains some cross-cutting
concern the developer wants to achieve. An aspect contains advices, which are the specific
code fragments executed when certain conditions of the program are met (for example,
a before advice is executed before a method executes, an after advice is executed after
a method regardless of the methods outcome, an around advice surrounds a method
execution). Contained within the aspect is also a pointcut, which is the set of criteria
determining when the aspect is meant to be executed (these can be at specific methods
or when specific constructors are called, and so on).

One can see a similarity between JSTQL and aspect-oriented programming: to define
where pointcuts are placed, we have to define some structure and the AOP weaver has to
search the code execution for events triggering the pointcut and run the advice defined
within the aspect of that given pointcut.
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Chapter 7

Conclusion and Future Work

In this thesis, we have explored an approach to define transformations of JavaScript code
based on formal specifications of syntactic proposals. The goal of such transformations
is to gather (early) feedback for (contentious) syntactic ECMAScript language proposals
discussed by the TC39 committee. Our tool opens a possibility for the users to “preview”
proposals on their own codebases: it can be conjectured that users’ familiarity with the
code shall improve the quality of feedback.

The work presented in this thesis is an initial step in developing a language workbench-
like tool for supporting design of widely adopted programming languages. While this
thesis adequately implements the machinery of the core of such a tool, future work is
required. A major next step is to integrate a feedback gathering mechanism in an
IDE. This shall give users a way to apply proposals to fragments of their code and to be
able to give feedback on every such application. This could be implemented, for example,
using a rating scale (e.g., Likert scale) to quantify user’s preferences. The user would also
be able to submit their code (in an obfuscated form) directly to the TC39 committee.

We have also identified several directions on how the expressiveness of JSTQL can
be improved. For example, parameterized specifications can be introduced to enable
reuse of (parts of) proposal specifications. Another example is to support a richer syntax
for wildcards—this would allow for more power matching and transformations of the
AST structures. Currently, our tool relies heavily on abstract syntax trees produced by
Babel. While this can be considered as an advantage for the TC39’s use case, introducing
support for arbitrary JavaScript parsers can be beneficial.
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Ultimately, supporting other programming languages in our tool could help in
performing corpus analysis when designing new features for both ECMAScript and those
other languages. In addition, this could enable exploring co-evolution of programming
languages.
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Appendix A

TypeScript types of wildcard type expressions

1 export interface Identifier extends WildcardNode {
2 nodeType: "Identifier";
3 name: string;
4 }
5
6 export interface Wildcard {
7 nodeType: "Wildcard";
8 identifier: Identifier;
9 expr: TypeExpr;

10 star: boolean;
11 }
12
13 export interface WildcardNode {
14 nodeType: "BinaryExpr" | "UnaryExpr" | "GroupExpr" | "Identifier";
15 }
16
17 export type TypeExpr = BinaryExpr | UnaryExpr | PrimitiveExpr;
18
19 export type BinaryOperator = "||" | "&&";
20
21 export type UnaryOperator = "!";
22
23 export interface BinaryExpr extends WildcardNode {
24 nodeType: "BinaryExpr";
25 left: UnaryExpr | BinaryExpr | PrimitiveExpr;
26 op: BinaryOperator;
27 right: UnaryExpr | BinaryExpr | PrimitiveExpr;
28 }
29 export interface UnaryExpr extends WildcardNode {
30 nodeType: "UnaryExpr";
31 op: UnaryOperator;
32 expr: PrimitiveExpr;
33 }
34
35 export type PrimitiveExpr = GroupExpr | Identifier;
36
37 export interface GroupExpr extends WildcardNode {
38 nodeType: "GroupExpr";
39 expr: TypeExpr;
40 }

Listing A.1: TypesScript types of Type Expression AST
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Appendix B

Examples of transformations performed in Evaluation

1 for (const file of typeFiles) {
2 const content = await fs.readFile(join(styledJsxPath , file), ’utf8’)
3 await fs.writeFile(join(typesDir , file), content)
4 }

1 for (const file of typeFiles) {
2 const content = await (styledJsxPath |> join(%, file) |>

↪→ fs.readFile(%, ’utf8’));
3 await (typesDir |> join(%, file) |> fs.writeFile (%, content));
4 }

“Pipeline” transformation, taken from next.js/packages/next/taskfile.js
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1 tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime )
↪→ );

1 frameTime
2 |> (jsonTracks[i] |> parseKeyframeTrack (%)).scale (%)
3 |> tracks.push (%);

Transformation taken from three.js/src/animation/AnimationClip.js

1 const logger = createLogger ({
2 storagePath: join(__dirname , ’.progress -estimator ’),
3 });

1 const logger = {
2 storagePath: __dirname |> join(%, ’.progress -estimator ’)
3 } |> createLogger (%);

“Pipeline” transformation, taken from react/scripts/devtools/utils.js

1 if (isElement(content)) {
2 this._putElementInTemplate(getElement(content), templateElement)
3 return
4 }

1 if (content |> isElement (%)) {
2 content |> getElement (%) |> this._putElementInTemplate (%,

↪→ templateElement);
3 return;
4 }

“Pipeline” transformation, taken from bootstrap/js/src/util/template-factory.js

1 if (repo && repo.onDidDestroy) {
2 repo.onDidDestroy (() =>
3 this.repositoryPromisesByPath.delete(pathForDirectory)
4 );
5 }

1 if (repo && repo.onDidDestroy) {
2 (() => pathForDirectory |>

↪→ this.repositoryPromisesByPath.delete (%)) |>
↪→ repo.onDidDestroy (%);

3 }

“Pipeline” transformation, taken from atom/src/project.js
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1 Lensflare.Geometry = do {
2 const geometry = new BufferGeometry ();
3 const float32Array = new Float32Array ([
4 -1, -1, 0, 0, 0, 1, -1, 0, 1, 0, 1, 1, 0, 1, 1, -1, 1, 0, 0, 1,
5 ]);
6 const interleavedBuffer = new InterleavedBuffer(float32Array , 5);
7 geometry.setIndex ([0, 1, 2, 0, 2, 3]);
8 geometry.setAttribute(
9 "position",

10 new InterleavedBufferAttribute(interleavedBuffer , 3, 0, false)
11 );
12 geometry.setAttribute(
13 "uv",
14 new InterleavedBufferAttribute(interleavedBuffer , 2, 3, false)
15 );
16 geometry;
17 };

1 Lensflare.Geometry = do {
2 const geometry = new BufferGeometry ();
3 const float32Array = new Float32Array ([
4 -1, -1, 0, 0, 0, 1, -1, 0, 1, 0, 1, 1, 0, 1, 1, -1, 1, 0, 0, 1,
5 ]);
6 const interleavedBuffer = new InterleavedBuffer(float32Array , 5);
7 geometry.setIndex ([0, 1, 2, 0, 2, 3]);
8 geometry.setAttribute(
9 "position",

10 new InterleavedBufferAttribute(interleavedBuffer , 3, 0, false)
11 );
12 geometry.setAttribute(
13 "uv",
14 new InterleavedBufferAttribute(interleavedBuffer , 2, 3, false)
15 );
16 geometry;
17 };

“Do expression” transformation, taken from three.js/examples/jsm/objects/Lensflare.js
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1 const panLeft = (function () {
2 const v = new Vector3 ();
3
4 return function panLeft(distance , objectMatrix) {
5 v.setFromMatrixColumn(objectMatrix , 0); // get X column of

↪→ objectMatrix
6 v.multiplyScalar(-distance);
7
8 panOffset.add(v);
9 };

10 })();
11
12 const panUp = (function () {
13 const v = new Vector3 ();
14
15 return function panUp(distance , objectMatrix) {
16 if (scope.screenSpacePanning === true) {
17 v.setFromMatrixColumn(objectMatrix , 1);
18 } else {
19 v.setFromMatrixColumn(objectMatrix , 0);
20 v.crossVectors(scope.object.up , v);
21 }
22
23 v.multiplyScalar(distance);
24
25 panOffset.add(v);
26 };
27 })();

1 const panLeft = do {
2 const v = new Vector3 ();
3 function panLeft(distance , objectMatrix) {
4 v.setFromMatrixColumn(objectMatrix , 0); // get X column of

↪→ objectMatrix
5 v.multiplyScalar(-distance);
6 panOffset.add(v);
7 }
8 };
9 const panUp = do {

10 const v = new Vector3 ();
11 function panUp(distance , objectMatrix) {
12 if (scope.screenSpacePanning === true) {
13 v.setFromMatrixColumn(objectMatrix , 1);
14 } else {
15 v.setFromMatrixColumn(objectMatrix , 0);
16 v.crossVectors(scope.object.up , v);
17 }
18 v.multiplyScalar(distance);
19 panOffset.add(v);
20 }
21 };

“Do expression” transformation, taken from three.js/examples/jsm/objects/Lensflare.js
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1 async loadAsync(url , onProgress) {
2 const scope = this;
3 const path =
4 this.path === "" ? LoaderUtils.extractUrlBase(url) : this.path;
5 this.resourcePath = this.resourcePath || path;
6 const loader = new FileLoader(this.manager);
7 loader.setPath(this.path);
8 loader.setRequestHeader(this.requestHeader);
9 loader.setWithCredentials(this.withCredentials);

10 return loader.loadAsync(url , onProgress).then(async (text) => {
11 const json = JSON.parse(text);
12 const metadata = json.metadata;
13 if (
14 metadata === undefined ||
15 metadata.type === undefined ||
16 metadata.type.toLowerCase () === "geometry"
17 ) {
18 throw new Error("THREE.ObjectLoader: Can’t load " + url);
19 }
20 return await scope.parseAsync(json);
21 });
22 }

1 async loadAsync(url , onProgress) {
2 const scope = this;
3
4 const path = this.path === "" ? LoaderUtils.extractUrlBase(url) :

↪→ this.path;
5 this.resourcePath = this.resourcePath || path;
6
7 const loader = new FileLoader(this.manager);
8 loader.setPath(this.path);
9 loader.setRequestHeader(this.requestHeader);

10 loader.setWithCredentials(this.withCredentials);
11
12 const text = await loader.loadAsync(url , onProgress);
13
14 const json = JSON.parse(text);
15
16 const metadata = json.metadata;
17
18 if (
19 metadata === undefined ||
20 metadata.type === undefined ||
21 metadata.type.toLowerCase () === "geometry"
22 ) {
23 throw new Error("THREE.ObjectLoader: Can’t load " + url);
24 }
25
26 return await scope.parseAsync(json);
27 }

“Await to promise” transformation, taken from three.js/src/loaders/ObjectLoader.js


