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Chapter 1

Introduction

Intro goes here

1



Chapter 2

Background

2.1 Technical Committee 39

Technical Committee 39 is the committee which maintains ECMA-262 [9], the language
standard for ECMAScript, and other related standards. They develop this standard
following the TC39 process [21] for standard extension.

Technical Committee 39 (abbreviated as TC39) is a group within ECMA international,
whose main goal is to develop the language standard for ECMAScript (JavaScript) and
other related standards. These related standards include: ECMA-402, the internalization
API of ECMA-262, ECMA-404, the standard for JSON, ECMA-414, the ECMAScript
specification suite standard. The members of the committee are representatives from
various companies, academic institutions, and various other organizations from all across
the world interested in developing the ECMAScript language. The members are usually
people working wit JavaScript engines, tooling surrounding JavaScript, and other sections
related to the JavaScript language.

2.1.1 ECMA-262 Proposals

This section will contain what is a proposal, and how proposals are developed in TC39
for the ECMA-262 language standard.

A proposal in this context is a suggested change to the ECMA-262 language standard.
These additions to the standard have to solve some form of problem with the current ver-
sion of ECMAScript. Such problems can come in many forms, and can apply to any part
of the language. A problem can be, features that are not present in the language, incon-
sistent parts of the language, simplification of common patterns, etc etc. The proposal
development process is defined in the document TC39 Process.
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TC39 Process

The TC39 process [21], is a process document describing how the extension ECMA-262 is
performed. A suggested change to the ECMA-262 standard is in the form of a proposal.
This process documents describes the stages a proposal has to pass through to be accepted
into the ECMA-262 standard.

Stage 0 consists if ideation. The purpose of this stage is to allow for exploration and
ideation around what part of the current version of ECMAScript can be improved, and
then define a problem space for the committee to focus.

Stage 1, is the point the committee has started taking the suggested addition and
will consider it. The are several requirements to enter this stage: A champion has to
be identified, a champion is a member TC39 who is responsible for the proposal. A
rough outline of the problem, and a general shape of a solution. There has to have been
discussion around key algorithms, abstractions and semantics of the proposal. Potential
implementation challenges and cross-cutting concerns have to have been identified. All
these described requirements have to be captured in a public repository. Once all these re-
quirements are met, a proposal is accepted into stage 1. During this stage, the committee
will work on designing a solution, and resolve any cross-cutting concerns discovered.

Stage 2, a preferred solution has been identified. Requirements for a proposal to enter
this stage: All high level APIs and syntax have to be described in the proposal document.
Illustrative examples of usage created. An initial specification text have to be created.
In this stage, the solution identified have to be refined, minor details ironed out, and
experimental implementations will be created.

Stage 2.7, the proposal is principally approved, and has to be tested and validated. To
enter this stage, the major sections of the proposal have to be complete. The specification
text is finished, and all reviewers of the specification have approved. Once a proposal
has entered this stage, testing and validation will be performed. This is done through
the prototype implementations created in stage 2, and all features of the proposal is
validated.

Stage 3, proposal is recommended for implementation. Once a proposal has been
sufficiently tested and verified, it is moved to stage 3. During stage 3, the proposal
is implemented in all major engines. During this stage, the proposal is tested for web
compatibility issues, or integration issues in the major JavaScript engines.

Stage 4, the proposal is completed and included in the standard.
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2.2 AST and Babel

Abstract Syntax Tree

Abstract Syntax Trees (AST) is one of the most common representations used to represent
source code of programming languages [34]. It allows for the storage of structured text
into a tree, this is used in applications that work with source code, as source code is a
form of structured text.

Babel

Babel is a JavaScript toolchain, its main usage is converting ECMASCript 2015 and
newer into backwards older versions of JavaScript. The conversion to older versions is
done to increase compatibility of JavaScript in older environments such as older browsers.

Babel has a suite of libraries used to work with JavaScript source code, each library
relies on Babels AST definition [4]. The AST specification Babel uses tries to stay as true
to the ECMAScript standard as possible [24], which has made it a recommended parser
to use for proposal transpiler implementations [11]. A simple example of how source code
parsed into an AST with Babel looks like can be seen in Figure 2.1.

1 let name = 100;

VariableDeclaration

VariableDeclarator

Identifier NumericLiteral

Figure 2.1: Example of source code parsed to Babel AST

Babel’s mission is to transpile newer version of JavaScript into older versions that
are more compatible with different environments. It has a rich plugin system to allow a
myriad of features to be enabled or disabled. This makes the parser very versatile to fit
different ways of working with JavaScript source code.

Babels main feature is @babel/parse [5] and its plugins. This library allows parsing
of JavaScript experimental features. These features are usually proposals that are under
development by TC39, and the development of these plugins are a part of the proposal
deliberation process. Some examples of proposals that were first supported by Babels
plugin system are ”Do Expression” [14] and ”Pipeline” [15].
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2.3 Source code Querying

Source code querying is a technique used to extract information from source code. Since
source code is just structured text, one can treat it as a database, allowing for queries to
be written and perform operations on that data.

Source code Querying enables developers to search through their code for specific
patterns based on a query written. These queries can come in many different forms.
Such as SQL-like queries, structured queries,

This kind of querying is very useful for programs such as Integrated Development En-
vironments, source code transformations, and other tasks which require searching through
code. An example of source code querying being used in an IDE is Jetbrains structural
search and replace [19].

2.4 Domain Specific languages

Language Workbenches

One part of creating a software language is the tooling for that language. Most mod-
ern software languages are backed by some form of tooling, one important tool for a
language is the language server. This is created to allow for features such as syntax
highlighting, auto completion, error checking et.al. When creating a software language,
generating tooling to support this features can be done using a language workbench [28].
The language in question is specified within the language workbench, using a grammar.
That grammar is then used to generate the tooling of the language. Many such language
workbenches exist, such as Langium [12], Xtext [27], Jetbrains MPS, and Racket.
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Chapter 3

Collecting User Feedback for
Syntactic Proposals

The goal for this project is to utilize users familiarity with their own code to gain early
and worthwhile user feedback on new syntactic proposals for ECMAScript.

3.1 The core idea

When a use of ECMAScript wants to suggest a change to the language, the idea of the
change has to be described in a Proposal. A proposal is a general way of describing a
change and its requirements, this is done by a language specification, motivation for the
idea, and general discussion around the proposed change. A proposal ideally also needs
backing from the community of users that use ECMAScript, this means the proposal has
to be presented to users some way. This is currently done by many channels, such as
polyfills, code examples, and as beta features of the main JavaScript engines, however,
this paper wishes to showcase proposals to users by using a different avenue.

Users of ECMAScript have a familiarity with code they themselves have written. This
means they have knowledge of how their own code works and why they might have written
it a certain way. This project aims to utilize this pre-existing knowledge to showcase new
proposals for ECMAScript. This way will allow users to focus on what the proposal
actually entails, instead of focusing on the examples written by the proposal authors.

Further in this chapter, we will be discussing the current version and future version
of ECMAScript. What we are referring to in this case is with set of problems a proposal
is trying to solve, if that proposal is allowed into ECMAScript as part of the language,
there will be a future way of solving said problems. The current way is the current status
quo when the proposal is not part of ECMAScript, and the future version is when the
proposal is part of ECMAScript and we are utilizing the new features of said proposal.
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The program will allow the users to preview proposals way before they are part of the
language. This way the committee can get useful feedback from users of the language
earlier in the proposal process. Using the users familiarity will ideally allow for a more
efficient process developing ECMAScript.

3.1.1 Applying a proposal

The way this project will use the pre-existing knowledge a user has of their own code is
to use that code as base for showcasing a proposals features. Using the users own code as
base requires the following steps in order to automatically implement the examples that
showcase the proposal inside the context of the users own code.

The ide is to identify where the features and additions of a proposal could have
been used. This means identifying parts of the users program that use pre-existing
ECMAScript features that the proposal is interacting with and trying to solve. This will
then identify all the different places in the users program the proposal can be applied.
This step is called matching in the following chapters

Once we have matched all the parts of the program the proposal could be applied to,
the users code has to be transformed to use the proposal, this means changing the code
to use a possible future version of JavaScript. This step also includes keeping the context
and functionality of the users program the same, so variables and other context related
concepts have to be transferred over to the transformed code.

The output of the previous step is then a set of code pairs, where one a part of
the users original code, and the second is the transformed code. The transformed code
is then ideally a perfect replacement for the original user code if the proposal is part of
ECMAScript. These pairs are used as examples to present to the user, presented together
so the user can see their original code together with the transformed code. This allows
for a direct comparison and an easier time for the user to understand the proposal.

The steps outlined in this section require some way of defining matching and trans-
forming of code. This has to be done very precisely and accurately in order to avoid
examples that are wrong. Imprecise definition of the proposal might lead to transformed
code not being a direct replacement for the code it was based upon. For this we sug-
gest two different methods, a definition written in a custom DSL JSTQL and a definition
written in a self-hosted way only using ECMAScript as a language as definition language.
Read more about this in SECTION HERE.

3.2 Applicable proposals

A proposal for ECMAScript is a suggested change for the language, in the case of EC-
MAScript this comes in the form of an addition to the language, as ECMAScript does
not allow for breaking changes. There are many different kinds of proposals, this project
focuses exclusively on Syntactic Proposals.
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3.2.1 Syntactic Proposals

A syntactic proposal, is a proposal that contains only changes to the syntax of a language.
This means, the proposal contains either no, or very limited change to functionality, and
no changes to semantics. This limits the scope of proposals this project is applicable to,
but it also focuses solely on some of the most challenging proposals where the users of
the language might have the strongest opinions.

3.2.2 Simple example of a syntactic proposal

Consider an imaginary proposal declare numerical literal. This proposal describes
adding an optional keyword for declaring numerical variables if the expression of the
declaration is a numerical literal.

This proposal will look something like this:

1 // Original code
2 let x = 100;
3 let b = "Some String";
4 let c = 200;
5
6 // Code after application of proposal
7 int x = 100;
8 let b = "Some String";
9 let c = 200;

Listing 3.1: Example of imaginary proposal declare numerical literal

See that in 3.1 the change is optional, and is not applied to the declaration of c, but
it is applied to the declaration of x. Since the change is optional to use, and essentially is
just syntax sugar, this proposal does not make any changes to functionality or semantics,
and can therefore be categorized as a syntactic proposal.

3.2.3 ”Pipeline” Proposal

The ”Pipeline” proposal [15] is a syntactic proposal which focuses on solving problems
related to nesting of function calls and other expressions that take an expression as an
argument.

This proposal aims to solve two problems with performing consecutive operations on a
value. In ECMAScript there are two main styles of achieving this functionality currently:
nesting calls and chaining calls, each of them come with a differing set of challenges when
used.

Nesting calls is mainly an issue related to function calls with one or more arguments.
When doing many calls in sequence the result will be a deeply nested call expression.
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Using nested calls has some specific challenges related to readability. The order of
calls is from right to left, which is the opposite of the natural reading direction a lot of
the users of ECMAScript are used to day to day. This means it is difficult to switch
the reading direction when working out which call happens in which order. When using
functions with multiple arguments in the middle of the nested call, it is not intuitive to
see what call its arguments belong to. These issues are the main challenges this proposal
is trying to solve. There are currently ways to improve readability with nested calls,
as they can be simplified by using temporary variables. While this does introduce its
own set of issues, it provides some way of mitigating the readability problem. Another
positive side of nested calls is they do not require a specific design to be used, and a
library developer does not have to design their library around this specific call style.

1 // Deeply nested call with
↪→ single arguments

2 f1(f2(f3(f4(v))));

1 // Deeply nested call with
↪→ multi argument functions

2 f1(v5 , f2(f3(v3 , f4(v1 , v2)),
↪→ v4), v6);

Chaining solves some of these issues: indeed, as it allows for a more natural reading
direction left to right when identifying the sequence of call, arguments are naturally
grouped together with their respective function call, and it provides a way of untangling
deep nesting. However, executing consecutive operations using chaining has its own set
of challenges. To use chaining, the API of the code being called has to be designed to
allow for chaining. This is not always the case however, making use of chaining when
it has not been specifically designed for can be very difficult. There are also concepts
in JavaScript not supported when using chaining, such as arithmetic operations, literals,
await expressions, yield expressions and so on. This is because all of these concept
would ”break the chain”, and one would have to use temporary variables.

1 // Chaining calls
2 function1 ().function2 ().function3 ();
3
4 // Chaining calls with multiple arguments
5 function1(value1).function2 ().function3(value2).function4 ();

The ”Pipeline” proposal aims to combine the benefits of these two styles without the
challenges each method faces. The main benefit of the proposal is to allow for a similar
style to chaining when chaining has not been specifically designed to be applicable. The
essential idea is to use syntactic sugar to change the writing order of the calls without
influencing the API of the functions. Doing so will allow each call to come in the direction
of left to right, while still maintaining the modularity of deeply nested function calls.

The proposal introduces a pipe operator, which takes the result of an expression on
the left, and pipes it into an expression on the right. The location of where the result
is piped to is where the topic token is located. All the specifics of the exact token used
as a topic token and exactly what operator will be used as the pipe operator might be
subject to change, and is currently under discussion [7].

The code snippets below showcase the machinery of the proposal.
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1 // Status quo
2 var loc =

↪→ Object.keys(grunt.config(
↪→ "uglify.all" ))[0];

1 // With pipes
2 var loc =

↪→ grunt.config(’uglify.all’)
↪→ |> Object.keys (%) [0];

More intuitive ordering of function calls, to know exactly the order of execution.

1 // Status quo
2 const json = await

↪→ npmFetch.json(
3 npa(pkgs [0]).escapedName ,

↪→ opts);

1 // With pipes
2 const json = pkgs [0] |>

↪→ npa (%).escapedName |>
↪→ await npmFetch.json(%,
↪→ opts);

Seeing which argument is passed to which function call is is simpler when using pipes.

1 // Status quo
2 return filter(obj ,

↪→ negate(cb(predicate)),
↪→ context);

1 // With pipes
2 return cb(predicate) |>

↪→ _.negate (%) |>
↪→ _.filter(obj , %, context);

Can be used with any number of function arguments, as long as a single topic token
is used.

1 // Status quo
2 return

↪→ xf[’@@transducer/result ’](obj[methodName ](bind(xf[’@@transducer/step’],
↪→ xf), acc));

1 // With pipes
2 return xf
3 |>

↪→ bind (%[’@@transducer/step’],
↪→ %)

4 |> obj[methodName ](%, acc)
5 |>

↪→ xf[’@@transducer/result ’](%);

Complex call expressions are unraveled with pipes.

The pipe operator is present in many other languages such as F# [30] and Julia [10].
The main difference between the Julia and F# pipe operator compared to this proposal, is
the result of the left side expression has to be piped into a function with a single argument,
the proposal suggests a topic reference to be used in stead of requiring a function.

3.2.4 ”Do Expression”

The ”Do Expression” [14] proposal, is a proposal meant to bring a style of expression ori-
ented programming [25] to ECMAScript. Expression oriented programming is a concept
taken from functional programming which allows for combining expressions in a very free
manner, resulting in a highly malleable programming experience.

The motivation of the ”Do Expression” proposal is to allow for local scoping of a code
block that is treated as an expression. Thus, complex code requiring multiple statements
will be confined inside its own scope [9, 8.2] and the resulting value is returned from
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the block implicitly as an expression, similarly to how a unnamed functions or arrow
functions are currently used. In order to achieve this behavior in the current stable
version of ECMAScript, one needs to use immediately invoked unnamed functions [9,
15.2] and invoke them immediately, or use an arrow function [9, 15.3].

The codeblock of a do expression has one major difference from these equivalent
functions, as it allows for implicit return of the final statement of the block, and is the
resulting value of the entire do expression. The local scoping of this feature allows for a
cleaner environment in the parent scope of the do expression. What is meant by this is
for temporary variables and other assignments used once can be enclosed inside a limited
scope within the do block. Allowing for a cleaner environment inside the parent scope
where the do block is defined.

1 // Current status quo
2 let x = () => {
3 let tmp = f();
4 return tmp + tmp + 1;
5 };

1 // With do expression
2 let x = do {
3 let tmp = f();
4 tmp + tmp + 1;
5 };

The current version of JavaScript enables the use of arrow functions with no arguments
to achieve similar behavior to ”Do Expression”. The main difference in this case, is the
final statement/expression will implicitly return it’s Completion Record [9, 6.2.4]

1 // Current status quo
2 let x = function (){
3 let tmp = f();
4 let a = g() + tmp;
5 return a - 1;
6 }();

1 // With do expression
2 let x = do {
3 let tmp = f();
4 let a = g() + tmp;
5 a - 1;
6 };

This example is very similar, as it uses an unnamed function [9, 15.2] which is invoked
immediately to produce similar behavior to the ”Do Expression” proposal.

3.2.5 Await to Promise

We discuss now an imaginary proposal that was used as a running example during the
development of this thesis. This proposal is of just a pure JavaScript transformation
example. The transformation this proposal is meant to display, is transforming a code
using await [9, 27.7.5.3], into code which uses a promise [9, 27.2].

To perform this transformation, we define an equivalent way of expressing an await

expression as a promise. This means removing await, this expression now will return
a promise, which has a function then(), this function is executed when the promise
resolves. We pass an arrow function as argument to then, and append each following
statement in the current scope [9, 8.2] inside the block of that arrow function. This will
result in equivalent behavior to using await.
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1 // Code containing await
2 async function a(){
3 let b = 9000;
4 let something = await

↪→ asyncFunction ();
5 let c = something + 100;
6 return c + 1;
7 }

1 // Re -written using promises
2 async function a(){
3 let b = 9000;
4 return asyncFunction ()
5 .then(async (something)

↪→ => {
6 let c = something + 100;
7 return c;
8 })
9 }

Transforming using this imaginary proposal, will result in a returning the expression
present at the first await expression, with a deferred function then, that will execute
once the expression is completed. This function then takes a callback containing a
lambda function with a single argument. This argument shares a name with the initial
VariableDeclaration. This is needed because we have to transfer all statements that
occur after the original await expression into the body of the callback function. This
callback function also has to be async, in case any of the statements placed into it contains
await. This will result in equivalent behavior to the original code.

3.3 Searching user code for applicable snippets

In order to identify snippets of code in the user’s code where a proposal is applicable, we
need some way to define patterns of code to use as a query. To do this, we have designed
and implemented a domain-specific language that allows matching parts of code that is
applicable to some proposal, and transforming those parts to use the features of that
proposal.

3.3.1 Structure of JSTQL

In this section, we describe the structure of JSTQL . We describe every section of the
language, why each section is needed and what it is used for.

Proposal definition. JSTQL is designed to mimic the examples already provided in
proposal descriptions [21]. These examples can be seen in each of the proposals described
in Section 3.2. The idea is to allow a similar kind of notation to the examples in order
to define the transformations.

The first part of JSTQL is defining the proposal, this is done by creating a named
block containing all definitions of templates used for matching alongside their respective
transformation. This section is used to contain everything relating to a specific proposal
and is meant for easy proposal identification by tooling.

1 proposal Pipeline_Proposal {}
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Case definition. Each proposal will have one or more definitions of a template for code
to identify in the users codebase, and its corresponding transformation definition. These
are grouped together in order to have a simple way of identifying the corresponding
cases of matching and transformations. This section of the proposal is defined by the
keyword case and a block that contains its related fields. A proposal definition in JSTQL
should contain at least one case definition. This allows for matching many different code
snippets and showcasing more of the proposal than a single concept the proposal has to
offer.

1 case case_name {
2
3 }

Template used for matching In order to define the template used to match, we
have another section defined by the keyword applicable to. This section will contain the
template defined using JavaScript with specific DSL keywords defined inside the template.
This template is used to identify applicable parts of the user’s code to a proposal.

1 applicable to {
2 "let a = 0;"
3 }

This applicable to template, will create matches on any VariableDeclaration that
is initialized to the value 0, and is stored in an Identifier with name a.

Defining the transformation In order to define the transformation that is applied to
a specific matched code snippet, the keyword transform to is used. This section is similar
to the template section, however it uses the specific DSL identifiers defined in applicable
to, in order to transfer the context of the matched user code, this allows us to keep parts
of the users code important to the original context it was written in.

1 transform to{
2 "() => {
3 let b = 100;
4 }"
5 }

This transformation definition, will change any code matched to its corresponding match-
ing definition into exactly what is defined. This means for any matches produced this
code will be inserted in its place.

Full definition of JSTQL Taking all these parts of JSTQL structure, defining a
proposal in JSTQL will look as follows.
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1 proposal PROPOSAL_NAME {
2 case CASE_NAME_1 {
3 applicable to {
4 "let b = 100;"
5 }
6 transform to {
7 "() => {};"
8 }
9 }
10 case CASE_NAME_2 {
11 applicable to {
12 "console.log();"
13 }
14 transform to {
15 "console.dir();"
16 }
17 }
18 }

Listing 3.2: JSTQL definition of a proposal

This full example of JSTQL has two case sections. Each case is applied one at a time
to the user’s code. The first case will try to find any VariableDeclaration statements,
where the identifier is b, and the right side expression is a Literal with value 100.
The second case will change any empty console.log expression, into a console.dir

expression.

3.3.2 How a match and transformation is performed

To perform matching and transformation of the user’s code, we first have to have some
way of identifying applicable user code. These applicable code sections then have to be
transformed and inserted it back into the full user code definition.

Identifying applicable code

To identify sections of code a proposal is applicable to, we use templates, which are
snippets of JavaScript. These templates are used to identify and match applicable sections
of a users code. A matching section for a template is one that produces an exactly equal
AST structure, where each node of the AST sections has the same information contained
within it. This means that templates are matched exactly against the users code, this
does not really provide some way of querying the code and performing context based
transformations, so for that we use wildcards within the template.

Wildcards are interspliced into the template inside a block denoted by << >>. Each
wildcard starts with an identifier, which is a way of referring to that wildcard in the
definition of the transformation template later. This allows for transferring the context
of parts matched to a wildcard into the transformed output, like identifiers, parts of
statements, or even entire statements, can be transferred from the original user code
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into the transformation template. A wildcard also contains a type expression. A type
expression is a way of defining exactly the types of AST nodes a wildcard will produce
a match against. These type expressions use Boolean logic together with the AST node-
types from BabelJS [2] to create a very versatile of defining exactly what nodes a wildcard
can match against.

Wildcard type expressions

Wildcard expressions are used to match AST node types based on Boolean logic. This
Boolean logic is based on comparison of Babel AST node types [4]. We do this be-
cause we need an accurate and expressive way of defining specifically what kinds of
AST nodes a wildcard can be matched against. This means an type expression can
be as simple as VariableDeclaration: this will match only against a node of type
VariableDeclaration. We also special types for Statement for matching against a
statement, and Expression for matching any expression.

This example will allow any CallExpression to match against this wildcard named
expr.

1 << expr: CallExpression >>

To make this more expressive, the type expressions support binary and unary op-
erators.We support the following operators, && is logical conjunction, || means logical
disjunction,! is logical negation. This makes it possible to build complex type expres-
sions, making it very expressive exactly what nodes are allowed to match against a specific
wildcard.

In the first example on line 1, we want to limit the wildcard to not match against any
nodes with type VariableDeclaration, while still allowing any other Statement. The
example on line 2 want to avoid loop specific statements. We express this by allowing any
Statement, but we negate the expression containing the types of loop specific statements.

1 << notVariableDeclaration: Statement && !VariableDeclaration >>
2 << noLoopSpecificStatements: Statement && !( BreakStatement ||

↪→ ContinueStatement) >>

The wildcards support matching subsequent sibling nodes of the code against a single
wildcard. We achieve this behavior done by using a Keene plus at the top level of the
expression. A Keene plus means one or more, so we allow for one or more matches in
order when using this token. This is useful for matching against a series of one or more
specific nodes, the matching algorithm will continue to match until the type expression
no longer evaluates to true.

In the example below, we allow the wildcard to match multiple nodes with the Keene
plus +. This example will continue to match against itself as long as the nodes are a
Statement and at the same time is not a ReturnStatement.
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1 << statementsNoReturn : (Statement && !ReturnStatement)+ >>

1 let variableName = << expr1: (( CallExpression || Identifier) &&
↪→ !ReturnStatement)+ >>;

A wildcard section is defined on the right hand side of an assignment statement. This
wildcard will match against any AST node classified as a CallExpression or an Identifier.

3.3.3 Transforming

When matching sections of the users code has been found, we need some way of defining
how to transform those sections to showcase a proposal. This is done using the transform
to template. This template describes the general structure of the newly transformed code,
with context from the users code by using wildcards.

A transformation template defines how the matches will be transformed after applica-
ble code has been found. The transformation is a general template of the code once the
match is replaced in the original AST. However, without transferring over the context
from the match, this would be a template search and replace. Thus, in order to transfer
the context from the match, wildcards are defined in this template as well. These wild-
cards use the same block notation found in the applicable to template, however they
do not need to contain the types, as those are not needed in the transformation. The
only required field of the wildcard is the identifier defined in applicable to. This is
done in order to know which wildcard match we are taking the context from, and where
to place it in the transformation template.

Transforming a variable declaration from using let to use const.

1 // Example applicable to template
2 applicable to {
3 let <<variableName: Identifier >> = <<expr1: Expression >>;
4 }
5
6 // Example of transform to template
7 transform to {
8 const <<variableName >> = <<expr1 >>;
9 }

3.3.4 Using JSTQL

JSTQL is designed to be used at a proposal development stage, this means the users of
JSTQL will most likely be TC39 [20] delegates, or otherwise relevant stakeholders.

JSTQL is designed to closely mimic the style of the examples required in the TC39
process [21]. We chose to design it this way to specifically make this tool fit the use-
case of the committee. The idea behind this project is to gather early user feedback on
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syntactic proposals, this would mean the main users of this kind of tool is the committee
themselves.

JSTQL is just written using text, most Domain-specific languages have some form of
tooling to make the process of using the DSL simpler and more intuitive. JSTQL has
an extension built for Visual Studio Code, see Figure 3.1, this extension supports many
common features of language servers, it supports auto completion, it will produce errors
if fields are defined wrong or are missing parameters.

Figure 3.1: Writing JSTQL in Visual Studio Code with extension

The language server included with this extension performs validation of the wildcards.
This allows verification of wildcard declarations in applicable to, see Figure 3.2. If a
wildcard is declared with no types, an error will be reported.

Figure 3.2: Error displayed when declaring a wildcard with no types.

The extension automatically uses wildcard declarations in applicable to to verify
all wildcards referenced in transform to are declared. If an undeclared wildcard is used,
an error will be reported and the name of the undeclared wildcard will be displayed, see
Figure 3.3.
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Figure 3.3: Error displayed with usage of undeclared wildcard.

3.4 Using the JSTQL with syntactic proposals

This section contains the definitions of the proposals used to evaluate the tool created in
this thesis. These definitions do not have to cover every single case where the proposal
might be applicable, as they just have to be general enough to create some amount of
examples that will give a representative number of matches when the transformations are
applied to some relatively long user code. This is because this this tool will be used to
gather feedback from user’s on proposals during development. Because of this use case,
it does not matter that we catch every single applicable code snippet, just that we find
enough to perform a ”showcase” of the proposal to the user. The most important thing is
that the transformation is correct, as incorrect transformations will lead to bad feedback
on the proposal.

3.4.1 ”Pipeline” Proposal

The ”Pipeline” proposal is one of the proposals presented in Section 3.2. This proposal
is applicable to call expressions, which are used all across JavaScript. This proposal is
trying to solve readability when performing deeply nested function calls.

1 proposal Pipeline {
2
3 case SingleArgument {
4 applicable to {
5 "<<someFunctionIdent:Identifier ||

↪→ MemberExpression >>(<< someFunctionParam:
↪→ Expression >>);"

6 }
7
8 transform to {
9 "<<someFunctionParam >> |> <<someFunctionIdent >>(%);"
10 }
11 }
12
13 case TwoArgument{
14 applicable to {
15 "<<someFunctionIdent: Identifier ||

↪→ MemberExpression >>(<< someFunctionParam:
↪→ Expression >>, <<moreFunctionParam: Expression >>)"

16 }
17 transform to {
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18 "<<someFunctionParam >> |> <<someFunctionIdent >>(%,
↪→ <<moreFunctionParam >>)"

19 }
20 }
21 }

Listing 3.3: Example of ”Pipeline” proposal definition in JSTQL

In the Listing 3.3, the first pair definition SingleArgument will apply to any
CallExpression with a single argument. We do not expressively write a CallExpression
inside a wildcard, as we have defined the structure of a CallExpression. The first wild-
card someFunctionIdent, has the types of Identifier, to match against single identi-
fiers, and MemberExpression, to match against functions who are members of objects,
i.e. console.log. In the transformation template, we define the structure of a function
call using the pipe operator, but the wildcards change order, so the argument passed as
argument someFunctionParam is placed on the left side of the pipe operator, and the
CallExpression is on the right, with the topic token as the argument. This case will
produce a match against all function calls with a single argument, and transform them to
use the pipe operator. The main difference of the second case TwoArgument, is it matches
against functions with exactly two arguments, and uses the first argument as the left side
of the pipe operator, while the second argument remains in the function call.

3.4.2 ”Do Expressions” Proposal

The ”Do Expressions” proposal [14] can be specified in our DSL. Due to the nature of
the proposal, it is not as applicable as the ”Pipeline” proposal, as it does not re-define
a style that is used quite as frequently as call expressions. This means the amount of
transformed code snippets this specification in JSTQL will be able to perform is expected
to be lower. This is due to the ”Do Expression” proposal introducing an entirely new
way to write expression-oriented code in JavaScript. If the user running this tool has not
used the current way of writing in an expression-oriented style in JavaScript, JSTQL is
limited in the amount of transformations it can perform. Nevertheless, if the user has
been using an expression-oriented style, JSTQL will transform parts of the code.

1 proposal DoExpression {
2 case arrowFunction {
3 applicable to {
4 "() => {
5 <<statements: (Statement && !ReturnStatement)+>>
6 return <<returnVal : Expression >>;
7 }
8 "
9 }
10 transform to {
11 "(do {
12 <<statements >>
13 <<returnVal >>
14 })"
15 }
16 }
17
18 case immediatelyInvokedAnonymousFunction {
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19 applicable to {
20 "(function (){
21 <<statements: (Statement && !ReturnStatement)+>>
22 return <<returnVal : Expression >>;
23 })();"
24 }
25
26 transform to {
27 "(do {
28 <<statements >>
29 <<returnVal >>
30 })"
31 }
32 }
33 }

Listing 3.4: Definition of Do Proposal in JSTQL

In Listing 3.4, the specification of ”Do Expression” proposal in JSTQL can be seen.
It has two cases: the first case arrowFunction, applies to a code snippet using an arrow
function [9, 15.3] with a return value. The wildcards of this template are statements,
which is a wildcard that matches against one or more statements that are not of type
ReturnStatement, the reason we limit the one or more match is we cannot match the
final statement of the block to this wildcard, as that has to be matched against the re-
turn statement in the template. The second wildcard returnVal matches against any
expressions. The reason for extracting the expression from the return statement, is to
use it in the implicit return of the do block. In the transformation template, we re-
place the arrow function with with a do expression, this do expression has to be defined
inside parenthesis, as a free floating do expression is not allowed due to ambiguous pars-
ing against a do while() statement. We and insert the statements matched against
statements wildcard into the block of the do expression, and the final statement of the
block is the expression matched against the returnVal wildcard. This will produce an
equivalent transformation of an arrow function into a do expression. The second case
immediatelyInvokedAnonymousFunction follows the same principle as the first case,
but is applied to immediately invoked anonymous functions, and produces the exact same
output after the transformation as the first case. This is because immediately invoked
anonymous functions are equivalent to arrow functions.

3.4.3 ”Await to Promise” imaginary proposal

The imaginary proposal ”Await to Promise” is created to transform code snippets from
using await, to use a promise with equivalent functionality.

This proposal was created in order to evaluate the tool, as it is quite difficult to
define applicable code in this current template form. This definition is designed to create
matches in code using await, and highlight how await could be written using a promise
in stead. This actually highlights some of the issues with the current design of JSTQL
that will be described in Future Work.
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1 proposal awaitToPomise{
2 case single{
3 applicable to {
4 "let <<ident:Identifier >> = await <<awaitedExpr:

↪→ Expression >>;
5 <<statements: (Statement && !ReturnStatement &&

↪→ !ContinueStatement &&! BreakStatement)+>>
6 return <<returnExpr: Expression >>
7 "
8 }
9
10 transform to{
11 "return <<awaitedExpr >>.then(async <<ident >> => {
12 <<statements >>
13 return <<returnExpr >>
14 });"
15 }
16 }
17 }

Listing 3.5: Definition of Await to Promise evaluation proposal in JSTQL

The specification of ”Await to Promise” in JSTQL is created to match asynchronous
code inside a function. It is limited to match asynchronous functions containing a single
await statement, and that await statement has to be stored in a VariableDeclaration.
The second wildcard statements, is designed to match all statements following the await
statement up to the return statement. This is done to move the statements into the
callback function of then() in the transformation. We includeReturnStatement because
we do not want to consume the return as it would then be removed from the functions
scope and into the callback function of then(). We also have to avoid matching where
there exists loop specific statements such as ContinueStatement or BreakStatement.

The transformation definition has to use an async function in .then(), as there might
be more await expressions contained within statements.

3.5 JSTQL-SH

In this thesis, we also created an alternative way of defining proposals and their respective
transformations, this is done using JavaScript as it’s own meta language for the defini-
tions. The reason for creating a way of defining proposals using JavaScript is, it allows
us to limit the amount of dependencies of the tool, since we no longer rely on JSTQL ,
and it allows for more exploration in the future work of this project.

JSTQL-SH is less of an actual language, and more of a program API at the moment,
it allows for defining proposals purely in JavaScript objects, which is meant to allow a
more modular way of using this idea. In JSTQL-SH you define a prelude, which is just
a list of variable declarations that contain the type expression as a string for that given
wildcard. This means we do not need to perform wildcard extraction when wanting to
parse the templates used for matching and transformation.
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1 // Definition in JSTQL
2 proposal a{
3 case {
4 applicable to {
5 <<a:Expression >>
6 }
7 transform to {
8 () => <<a>>
9 }
10 }
11 }

1 // Equivalent definition in
↪→ JSTQL -SH

2 {
3 prelude: ’let a =

↪→ "Expression"’‘,
4 applicableTo: "a;",
5 transformTo: "() => a;"
6 }
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Chapter 4

Implementation

In this chapter, the implementation of the tool utilizing the JSTQL and JSTQL-SH
will be presented. It will describe the overall architecture of the tool, the flow of data
throughout, and how the different stages of transforming user code are completed.

4.1 Architecture of the solution

The architecture of the solution described in this thesis is illustrated in Figure 4.1

In this tool, there exists two multiple ways to define a proposal, and each provide the
same functionality, they only differ in syntax and writing-method. One can either write
the definition in JSTQL , or one can use the program API with JSTQL-SH , which is
more friendly for programs to interact with.

In the architecture diagram of Figure 4.1, ellipse nodes show data passed into the
program sections, and rectangular nodes is a specific section of the program. The archi-
tecture is split into seven levels, where each level is a step of the program. The initial
step is the proposal definition, the definition can have two different forms, either it is
JSTQL code, or it can be a JavaScript object using the self hosted in JSTQL-SH . If we
use JSTQL , the second step is parsing it using Langium [12], this parses the raw source
code into an AST. If JSTQL-SH is used, we have to build the prelude, so we have to
extract the wildcard definitions from JavaScript source code. At this point the two paths
meet at the second step, which is wildcard extraction. At this step, if JSTQL was used,
the wildcards are extracted from the template. If JSTQL-SH was used extraction is not
needed. In both cases we parse the wildcard type expressions into an AST. The third
step is parsing the raw source code with Babel [2]. It is also at this point we parse the
users source code into an AST. The fourth step is translating the Babel AST into our
own custom tree structure for simpler traversal. Once all data is prepared, the fifth step
is matching the user’s AST against the applicable to template AST. Once all matches
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have been found, we transplant the wildcard matches into the transform to template,
and insert it back into the users code in step six. We have at this point transformed the
users code, the final step seven is generating it back into source code.

2. Wildcard Extraction

1. Prelude Builder

Self-Hosted Object

1. Langium Parser

JSTQL Code

3. BabelUser source code

4. Custom Tree builder

5. Matcher

6. Transformer

7. Generator

Figure 4.1: Overview of tool architecture

4.2 Parsing JSTQL using Langium

In this section, we describe the implementation of the parser for JSTQL . We outline
the tool Langium, used as a parser-generator to create the AST used by the tool later to
perform the transformations.

4.2.1 Langium

Langium [12] is a language workbench [28] primarily used to create parsers and Integrated
Development Environments for domain specific languages. These kinds of parsers produce
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Abstract Syntax Trees that are later used to create interpreters or other tooling. In this
project, we use Langium to generate an AST definition in the form of TypeScript objects.
These objects and their structure are used as definitions for the tool to do matching and
transformation of user code.

To generate this parser, Langium requires a definition of a grammar. A grammar is a
specification that describes syntax a valid programs. The JSTQL grammar describes the
structure of JSTQL , such as proposals, cases, applicable to blocks, and transform

to blocks. A grammar in Langium starts by describing the Model. The model is the top
entry of the grammar; this is where the description of all valid top level statements.

Contained within the Model rule, is one or more proposals. Each proposal is defined
with the rule Proposals, and starts with the keyword proposal, followed by a name, and
a code block. This rule is designed to contain every definition of a transformation related
to a specific proposal. To hold every transformation definition, a proposal definition
contains one or more cases.

The Case rule is created to contain a single transformation. Each case specification
starts with the keyword case, followed by a name for the current case, then a block
for that case’s fields. Cases are designed in this way to separate different transformation
definitions within a proposal. Each case contains a single definition used to match against
user code, and a definition used to transform a match.

The rule AplicableTo, is designed to hold a single template used for matching. It
starts with the keywords applicable and to, followed by a block designed to hold the
matching template definition. The template is defined as the terminal STRING, and is
parsed as a raw string for characters by Langium [12].

The rule TransformTo, is created to contain a single template used for transforming a
match. It starts with the keywords transform and to, followed by a block that holds the
transformation definition. This transformation definition is declared with the terminal
STRING, and is parser at a string of characters, same as the template in applicable to.

In order to define exactly what characters/tokens are legal in a specific definition,
Langium uses terminals defined using regular expressions, these allow for a very specific
character-set to be legal in specific keys of the AST generated by the parser generated by
Langium. In the definition of Proposal and Pair the terminal ID is used; this terminal
is limited to allow for only words and can only begin with a character of the alphabet or
an underscore. In Section the terminal STRING is used, this terminal is meant to allow
any valid JavaScript code and the custom DSL language described in 3.3.2. Both these
terminals defined allows Langium to determine exactly what characters are legal in each
location.

1 grammar Jstql
2
3 entry Model:
4 (proposals += Proposal)*;
5
6 Proposal:
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7 ’proposal ’ name=ID "{"
8 (case+=Case)+
9 "}";
10
11 Case:
12 "case" name=ID "{"
13 aplTo=ApplicableTo
14 traTo=TransformTo
15 "}";
16
17 ApplicableTo:
18 "applicable" "to" "{"
19 apl_to_code=STRING
20 "}";
21 TransformTo:
22 "transform" "to" "{"
23 transform_to_code=STRING
24 "}";
25 hidden terminal WS: /\s+/;
26 terminal ID: /[_a-zA-Z][\w_]*/;
27 terminal STRING: /"[^"]*"|’[^’]*’/;

Listing 4.1: Definition of JSTQL in Langium.

With JSTQL , we are not implementing a programming language meant to be exe-
cuted. We are using Langium in order to generate an AST that will be used as a markup
language, similar to YAML, JSON or TOML [23]. The main reason for using Langium in
such an unconventional way is Langium provides support for Visual Studio Code integra-
tion, and it solves the issue of parsing the definition of each proposal manually. However,
with this grammar we cannot actually verify the wildcards placed in apl to code and
transform to code are correctly written. To do this, we have implemented several vali-
dation rules.

Langium Validator

A Langium validator allows for further checks DSL code, a validator allows for the im-
plementation of specific checks on specific parts of the grammar.

JSTQL does not allow empty typed wildcard definitions in applicable to blocks,
this means we cannot define a wildcard that allows any AST type to match against it.
This is not defined within the grammar, as inside the grammar the code is defined as
a STRING terminal. This means further checks have to be implemented using code. In
order to do this we have a specific Validator implemented on the Case definition of
the grammar. This means every time anything contained within a Case is updated, the
language server created with Langium will perform the validation step and report any
errors.

The validator uses Case as its entry point, as it allows for a checking of wildcards
in both applicable to and transform to, allowing for a check for whether a wildcard
identifier used in transform to exists in the definition of applicable to.
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1 export class JstqlValidator {
2 validateWildcardAplTo(pair: Pair , accept: ValidationAcceptor):

↪→ void {
3 try {
4 if (validationResultAplTo.errors.length != 0) {
5 accept("error",

↪→ validationResultAplTo.errors.join("\n"), {
6 node: pair.aplTo ,
7 property: "apl_to_code",
8 });
9 }
10 if (validationResultTraTo.length != 0) {
11 accept("error", validationResultTraTo.join("\n"), {
12 node: pair.traTo ,
13 property: "transform_to_code",
14 });
15 }
16 } catch (e) {}
17 }
18 }

Using Langium as a parser

Langium is designed to automatically generate extensive tool support for the language
specified using its grammar. However, in our case we have to parse the JSTQL definition
using Langium, and then extract the Abstract syntax tree generated in order to use the
information it contains.

To use the parser generated by Langium, we created a custom function parseDSLtoAST,
which takes a string as an input (the raw JSTQL code), and outputs the pure AST using
the format described in the grammar, see Listing 3.3.2. This function is exposed as a
custom API for our tool to interface with. This also means our tool is dependent on the
implementation of the Langium parser to function with JSTQL . The implementation of
JSTQL-SH is entirely independent.

When interfacing with the Langium parser to get the Langium generated AST, the
exposed API function is imported into the tool, when this API is executed, the output is
on the form of the Langium Model, which follows the same form as the grammar. This
is then transformed into an internal object structure used by the tool, this structure is
called TransformRecipe, and is then passed in to perform the actual transformation.

4.3 Wildcard extraction and parsing

In order to refer to internal DSL variables defined in applicable to and transform

to blocks of the transformation, we need to extract this information from the template
definitions and pass that on to the matcher.
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Why not use Langium for wildcard parsing?

Langium has support for creating a generator to output an artifact, which is some trans-
formation applied to the AST built by the Langium parser. This suits the needs of
JSTQL quite well and could be used to extract the wildcards and parse the type expres-
sions. This is the way the developers of Langium want this kind of functionality to be
implemented, however, the implementation would still be mostly the same, as the pars-
ing of the wildcards still has to be done ”manually” with a custom parser. Therefore,
we decided for this project to keep the parsing of the wildcards separate. If we were to
use Langium generators to parse the wildcards, it would make JSTQL-SH dependent on
Langium. This is not preferred as that would mean both ways of defining a proposal are
reliant of Langium. The reason for using our own extractor is to allow for an independent
way to define transformations using our tool.

Extracting wildcards from JSTQL

In order to allow the use of Babel [2], the wildcards present in the applicable to blocks
and transform to blocks have to be parsed and replaced with some valid JavaScript.
This is done by using a pre-parser that extracts the information from the wildcards and
inserts an Identifier in their place.

To extract the wildcards from the template, we look at each character in the template.
If a start token of a wildcard is discovered, which is denoted by <<, everything after that
until the closing token, which is denoted by >>, is then treated as an internal DSL variable
and will be stored by the tool. A variable flag is used (line 5,10 4.2), when the value
of flag is false, we know we are currently not inside a wildcard block, this allows us to
pass the character through to the variable cleanedJS (line 196 4.2). When flag is true,
we know we are currently inside a wildcard block and we collect every character of the
wildcard block into temp. Once we hit the end of the wildcard block, when we have
consumed the entirety of the wildcard, the contents of the temp variable is passed to a
tokenizer, then the tokens are parsed by a recursive descent parser (line 10-21 4.2).

Once the wildcard is parsed, and we know it is safely a valid wildcard, we insert an
identifier into the JavaScript template where the wildcard would reside. This allows for
easier identifications of wildcards when performing matching/transformation as we can
identify whether or not an Identifier in the code is the same as the identifier for a wildcard.
This however, does introduce the problem of collisions between the wildcard identifiers
inserted and identifiers present in the users code. In order to avoid this, the tool adds
at the beginning of every identifier inserted in place of a wildcard. This allows for easier
identification of if an Identifier is a wildcard, and avoids collisions where a variable in the
user code has the same name as a wildcard inserted into the template. This can be seen
on line 17 of Listing 4.2.
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1 export function parseInternal(code: string): InternalParseResult {
2 for (let i = 0; i < code.length; i++) {
3 if (code[i] === "<" && code[i + 1] === "<") {
4 // From now in we are inside of the DSL custom block
5 flag = true;
6 i += 1;
7 continue;
8 }
9
10 if (flag && code[i] === ">" && code[i + 1] === ">") {
11 // We encountered a closing tag
12 flag = false;
13 try{
14 let wildcard = new WildcardParser(
15 new WildcardTokenizer(temp).tokenize ()
16 ).parse ();
17 cleanedJS +=

↪→ collisionAvoider(wildcard.identifier.name);
18
19 prelude.push(wildcard);
20 i += 1;
21 temp = "";
22 continue;
23 }
24 catch (e){
25 // We probably encountered a bitshift operator , append

↪→ temp to cleanedJS
26 }
27
28 }
29 if (flag) {
30 temp += code[i];
31 } else {
32 cleanedJS += code[i];
33 }
34 }
35 return { prelude , cleanedJS };
36 }

Listing 4.2: Extracting wildcard from template.

Parsing wildcard Once a wildcard has been extracted from definitions inside JSTQL ,
they have to be parsed into a simple AST to be used when matching against the wildcard.
This is accomplished by using a simple tokenizer and a recursive descent parser [26].

Our tokenizer takes the raw stream of input characters extracted from the wildcard
block within the template, and determines which part is what token. Due to the very
simple nature of the type expressions, no ambiguity is present with the tokens, so de-
termining what token is meant to come at what time is quite trivial. We use a switch
case on the current token, if the token is of length one we accept it and move on to the
next character. If the next character is an unexpected one it will produce an error. The
tokenizer also groups tokens with a token type, this allows for an simpler parsing of the
tokens later.

A recursive descent parser mimics the grammar of the language the parser is imple-
mented for, where we define functions for handling each of the non-terminals and ways
to determine what non terminal each of the token-types result in. The type expression
language is a very simple Boolean expression language, making parsing quite simple.
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1 Wildcard:
2 Identifier ":" MultipleMatch
3
4 MultipleMatch:
5 GroupExpr "*"
6 | TypeExpr
7
8 TypeExpr:
9 BinaryExpr
10 | UnaryExpr
11 | PrimitiveExpr
12
13 BinaryExpr:
14 TypeExpr { Operator TypeExpr }*
15
16 UnaryExpr:
17 {UnaryOperator }? TypeExpr
18
19 PrimitiveExpr:
20 GroupExpr | Identifier
21
22 GroupExpr:
23 "(" TypeExpr ")"

Listing 4.3: Grammar of type expressions

The grammar of the type expressions used by the wildcards can be seen in Figure 4.3,
the grammar is written in something similar to Extended Backus-Naur form, where we
define the terminals and non-terminals in a way that makes the entire grammar parseable
by the recursive descent parser.

Our recursive descent parser produces an AST, which is later used to determine when
a wildcard can be matched against a specific AST node, the full definition of this AST can
be seen in Appendix A.1. We use this AST by traversing it using a [33]visitor pattern and
comparing each Identifier against the specific AST node we are currently comparing
with, and evaluating all subsequent expressions and producing a boolean value, if this
value is true, the node is matched against the wildcard, if not then we do not have a
match.

Extracting wildcards from JSTQL-SH The self-hosted version JSTQL-SH also re-
quires some form of pre-parsing in order to prepare the internal DSL environment. This
is relatively minor and only parsing directly with no insertion compared to JSTQL .

In order to use JavaScript as the meta language, we define a prelude on the object
used to define the transformation case. This prelude is required to consist of several
Variable declaration statements, where the variable names are used as the internal
DSL variables and right side expressions are strings that contain the type expression used
to determine a match for that specific wildcard.

We use Babel to generate the AST of the prelude definition, this allows us to get a
JavaScript object structure. Since the structure is very strictly defined, we can expect
every stmt of stmts to be a variable declaration, otherwise throw an error for invalid
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prelude. Then the string value of each of the variable declarations is passed to the same
parser used for JSTQL wildcards.

The reason this is preferred is it allows us to avoid having to extract the wildcards
and inserting an Identifier.

4.4 Using Babel to parse

Allowing the tool to perform transformations of code requires the generation of an Ab-
stract Syntax Tree from the users code, applicable to and transform to. This means
parsing JavaScript into an AST, in order to do this we use Babel [2].

The most important reason for choosing to use Babel for the purpose of generating the
AST’s used for transformation is due to the JavaScript community surrounding Babel.
As this tool is dealing with proposals before they are part of JavaScript, a parser that
supports early proposals for JavaScript is required. Babel works closely with TC39 to
support experimental syntax [16] through its plugin system, which allows the parsing of
code not yet part of the language.

Custom Tree Structure

Performing matching and transformation on each of the sections inside a case definition,
they have to be parsed into and AST in order to allow the tool to match and trans-
form accordingly, for this we use Babel [2]. However, Babels AST structure does not
suit traversing multiple trees at the same time, this is a requirement for matching and
transforming. Therefore we take the AST and transform it into a simple custom tree
structure to allow for simple traversal of the tree.

As can be seen in Figure 4.4 we use a recursive definition of a TreeNode where a
nodes parent either exists or is null (it is top of tree), and a node can have any number
of children elements. This definition allows for simple traversal both up and down the
tree. Which means traversing two trees at the same time can be done in the matcher and
transformer section of the tool.

1 export class TreeNode <T> {
2 public parent: TreeNode <T> | null;
3 public element: T;
4 public children: TreeNode <T>[] = [];
5
6 constructor(parent: TreeNode <T> | null , element: T) {
7 this.parent = parent;
8 this.element = element;
9 if (this.parent) this.parent.children.push(this);
10 }
11 }

Listing 4.4: Simple definition of a Tree structure in TypeScript

31



Placing the AST generated by Babel into this structure means utilizing the li-
brary [6]Babel Traverse. Babel Traverse uses the visitor pattern [33] to perform traversal
of the AST. While this method does not suit traversing multiple trees at the same time,
it allows for very simple traversal of the tree to place it into our simple tree structure.

To place the AST into our tree structure, we use @babel/traverse [6] to visit each
node of the AST in a depth first manner, the idea is we implement a visitor for each of
the nodes in the AST and when a specific node is encountered, the corresponding visitor
of that node is used to visit it. When transferring the AST into our simple tree structure
we simply have to use the same visitor for every kind of AST node, and place that node
into the tree.

Visiting a node using the enter() function means we went from the parent to that
child node, and it should be added as a child node of the parent. The node is automatically
added to its parent list of children nodes from the constructor of TreeNode. Whenever
leaving a node the function exit() is called, this means we are moving back up into the
tree, and we have to update what node was the last in order to generate the correct tree
structure.

1 traverse(ast , {
2 enter(path: any) {
3 let node: TreeNode <t.Node > = new TreeNode <t.Node >(
4 last ,
5 path.node as t.Node
6 );
7
8 if (last == null) {
9 first = node;
10 }
11 last = node;
12 },
13 exit(path: any) {
14 if (last && last?. element ?.type != "Program") {
15 last = last.parent;
16 }
17 },
18 });
19 if (first != null) {
20 return first;
21 }

One important nuance of the way we place the nodes into the tree, is we still have
the same underlying data structure from Babel. Because of this, the nodes can still be
used with Babels APIs, and we can still access every field of each node. Transforming it
into a tree only creates an easy way to traverse up and down the tree by references. We
perform no copying.

4.5 Outline of transforming user code

Below is an outline of every major step performed, and how data is passed through the
program.
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Algorithm 1 Outline of steps of algorithm

1: CA,CT,W ← extractWildcards()
2: A, T ← babel.parse(CA,CT ) ▷ Parse templates
3: C ← babel.parse() ▷ Parse user code
4: AT, TT,CT ← Tree(A, T, C) ▷ Build the tree structure from Babel AST
5: if AT.length > 1 then ▷ Decide which matcher to use
6: M ← multiMatcher(CT,AT,W )
7: else
8: M ← singleMatcher(CT,AT,W )
9: end if
10: TMap← Map()
11: for each m in M do ▷ Build transformation templates
12: TMap.insert ← buildTransform(m, TT , W );
13: end for
14: for traverse(C) do
15: if TMap.has(c) then
16: C.replaceMany(TMap.get(c));
17: end if
18: end for
19: return babel.generate(C);

Each part of Algorithm 1 is a step in the full algorithm for transforming user code
based on a proposal specification in our tool. The initial step (line 1) is extraction of
wildcards from the template definition. This step also parses the wildcard type expres-
sions into an AST. The second step (lines 2,3) is to parse all templates into an AST with
@babel/parser [5]. Once we have parsed all code into ASTs, we decide which matching
algorithm to use (line 5) based on the applicable to template. These algorithms will
find all matching sections of the user AST to the template. We then build the transforma-
tion templates(lines 11-13), and insert the sections from the use code that was matched
with a wildcard. These transformations are stored in a Map(line 10). Once all transforma-
tions are prepared, we traverse the user AST (line 14), and insert the transformations if
the current node traversed is in the Map (line 16). The final step, is to generate JavaScript
from the transformed AST (line 19).

4.6 Matching

This section discusses how we find matches in the users code, this is the step described
in lines 5-10 of Listing 1. Firstly, we will discuss how individual nodes are compared,
then how the two traversal algorithms are implemented, and how matches are discovered
using these algorithms.
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4.6.1 Determining if AST nodes match

The initial problem we have to overcome is a way of comparing AST nodes from the tem-
plate to AST nodes from the user code. This step also has to take into account comparing
against wildcards and pass that information back to the AST matching algorithms.

When comparing two AST nodes in this tool, we use the function checkCodeNode,
which will give the following values based on what kind of match these two nodes produce.

NoMatch The nodes do not match.

Matched The nodes are a match, and the node of applicable to is not a wildcard.

MatchedWithWildcard The node of the user AST produced a match against a wild-
card.

MatchedWithPlussedWildcard The node of the user AST produced a match against
a wildcard that can match one or more nodes against itself.

When we are comparing two AST nodes, we have to perform an equality check. Due
to this being a structural matching search, we can get away with just performing some
preliminary checks, such as that names of identifiers, otherwise it is sufficient to just
perform an equality check of the types of the nodes we are currently trying to match. If
the types are the same, they can be validly matched against each other. This is sufficient
because we are currently trying to determine if a single node can be a match, and not
the entire template structure is a match. Therefore false positives that are not equivalent
are highly unlikely due to the fact the entire structure has to be a false positive match.

There is a special case when comparing two nodes, namely when encountering a wild-
card. To know if we have encountered a wildcard, the current AST node of applicable
to will be either an Identifier or a ExpressionStatement where the expression is an
Identifier. The reason it might be an ExpressionStatement is due to the wildcard
extraction step, where we replace the wildcard with an identifier of the same name. Due
to this replacement, we might place an identifier as a statement, the identifier will then
be wrapped inside an ExpressionStatement AST node. If the node of applicable to

is of either of these types, we have to check if the name of the identifier is the same as
a wildcard. If it is, we have to compare the type of the user AST node against the type
expression of the wildcard.

1 if(( aplToNode.type === "ExpressionStatement" &&
2 aplToNode.expression.type === "Identifier") ||
3 aplToNode.type === "Identifier"){
4
5 // Check if aplToNode is a wildcard
6 }

When comparing an AST node type against a wildcard type expression, we pass the
node type into a function WildcardEvaluator. This evaluator will traverse through the
AST of the wildcard type expression. Every leaf of the tree is equality checked against
the type, and the resulting boolean value is returned. Then we evaluate the expression,
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passing the values through the visitors until we have evaluated the entire expression,
and have a result. If the result of the evaluator is false, we return NoMatch. If the
result of the evaluation is true, we know we can match the user’s AST node against the
wildcard. If the wildcard type expression contains a Kleene plus, the comparison returns
MatchedWithPlussedWildcard, if not, we return MatchedWithWildcard.

4.6.2 Matching a single Expression/Statement template

In this section, we will discuss how matching is performed when the applicable to tem-
plate is a single expression/statement. A very complex matching template with many
statements might result in a lower chance of finding matches in the users code. There-
fore using simple, single root node matching templates provide the highest possibility of
discovering a match within the users code. This section will cover line 11 of Listing 1.

Determining if we are currently matching with a template that is only a single expres-
sion/statement, we have to verify that the program body of the template has the length
of one, if it does we can use the single length traversal algorithm.

There is a special case for if the template is a single expression, as the first node of
the AST generated by @babel/generate [3] will be of type ExpressionStatement, the
reason for this is Babel will treat free floating expressions as a statement. This will miss
many applicable parts of the users code, because expressions within other statements are
not wrapped in an ExpressionStatement. This will give a template that is incompatible
with a lot of otherwise applicable expressions. This means the statement has to be
removed, and the search has to be done with the expression as the top node of the
template. If the node in the body of the template is a statement, no removal has to be
done, as a statement can be used directly.

Discovering Matches Recursively The matcher used against single expression/s-
tatement templates is based Depth-First Search to traverse the trees. The algorithm can
be split into two steps. The initial step is to check if we are currently at the root of the
applicable to AST, the second is to try to match the current nodes, and start a search
on each of their child nodes.

It is important we try to match against the template at all levels of the code AST,
this is done by starting a new search one every child node of the code AST if the current
node of the template AST is the root node. This ensures we have tried to perform a
match at any level of the tree. This also ensures we have no partial matches, as we store
it only if it returns a match when being called with the root node of applicable to.

1 if(aplTo.element === this.aplToRoot){
2 // Start a search from root of aplTo on all child nodes
3 for(let codeChild of code.children){
4 let childMatch = singleMatcher(codeChild , aplTo);
5
6 // If it is a match , we know it is a full match and store it.
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7 if(childMatch){
8 this.matches.push(childMatch);
9 }
10 }
11 }

We can now determine if we are currently exploring a match. This means the current
code AST node is checked against the current node of applicable to AST. Based on
what kind of result the comparison between these two nodes give, we have perform
different steps.

NoMatch: If a comparison between the nodes return a NoMatch result, we perform an
early return of undefined, as no match was discovered. We can safely discard this
search, because we have started a search at all levels of the code AST.

Matched: The current code node matches against the current node of the template, and
we have to perform a search on each of the child nodes.

MatchedWithWildcard: When a comparison results in a wildcard match, we pair the
current code node and the template wildcard, and do an early return. We can do
this because if a wildcard matches, the nodes of the children does not matter and
will be placed into the transformation.

MatchedWithPlussedWildcard: this is a special case for a wildcard match. When
a match against a wildcard that has the Kleene plus tied to it we also perform an
early return. This result means some special traversal has to be done to the current
nodes siblings, this is described below.

A comparison result of Matched means the two nodes match, but the applicable

to node is not a wildcard. With this case, we perform a search on each child nodes of
applicable to AST and the user AST. This is performed in order, meaning the n-th
child node of applicable to is checked against the n-th child node of the user AST.

When checking the child nodes, we have to check for a special case when the com-
parison of the child nodes result in MatchedWithPlussedWildcard. If this result is en-
countered, we have to continue matching the same applicable to node against each
subsequent sibling node of the code node. This is because, a wildcard with a Keene plus
can match against multiple sibling nodes. This behavior can bee seen in line 17-31 of
Listing 4.5.

If all child nodes did not give the result of NoMatch, we have successfully matched
every node of the applicable to AST. This does not yet mean we have a match, as
there might be remaining nodes in the child node of the code AST. To check for this, we
check whether or not codeI is equal to the length of code.children. If it is unequal, we
have not matched all child nodes of the code AST and have to return NoMatch. This can
be seen on lines 37-39 of Listing 4.5.
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1 let codeI = 0;
2 let aplToI = 0;
3
4 while (aplToI < aplTo.children.length && codeI < code.children.length){
5 let [pairedChild , childResult] =

↪→ singleMatcher(code.children[codeI], aplTo.children[aplToI ]);
6
7 // If a child does not match , the entire match is discarded
8 if(childResult === NoMatch){
9 return [undefined , NoMatch ];
10 }
11
12 // Add the match to the current Paired Tree structure
13 pairedChild.parent = currentPair;
14 currentPair.children.push(pairedChild);
15
16 // Special case for Keene plus wildcard match
17 if(childResult === MatchedWithPlussedWildcard){
18 codeI += 1;
19 while(codeI < code.children.length){
20 let [nextChild , plusChildResult] =

↪→ singleMatcher(code.children[codeI],
↪→ aplTo.children[aplToI ]);

21
22 if(plusChildResult !== MatchedWithPlussedWildcard){
23 i -= 1;
24 break;
25 }
26
27 pairedChild.element.codeNode.push (... nextChild.element.codeNode);
28
29 codeI += 1;
30 }
31 }
32
33 codeI += 1;
34 aplToi += 1;
35 }
36
37 if(codeI !== code.children.length){
38 return [undefined , NoMatch]
39 }
40
41 return [currentPair , Match];

Listing 4.5: Pseudocode of child node matching

4.6.3 Matching multiple Statements

Using multiple statements in the template of applicable to means the tree of
applicable to as multiple root nodes, to perform a match with this kind of template,
we use a sliding window [29] with size equal to the amount statements in the template.
This window is applied at every BlockStatement and Program of the code AST, as that
is the only placement statements can reside in JavaScript [9, 14].

The initial step of this algorithm is to search through the AST for ast nodes that
contain a list of Statements. Searching the tree is done by Depth-First search, at every
level of the AST, we check the type of the node. Once a node of type BlockStatement

or Program is discovered, we start the trying to match the statements.
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1 multiStatementMatcher(code , aplTo) {
2 if (
3 code.element.type === "Program" ||
4 code.element.type === "BlockStatement"
5 ) {
6 matchMultiHead(code.children , aplTo.children);
7 }
8
9 for (let code_child of code.children) {
10 multiStatementMatcher(code_child , aplTo);
11 }
12 }

matchMultiHead uses a sliding window [29]. The sliding window will try to match
every statement of the code AST against its corresponding statement in the applicable
to AST. For every statement, we perform a DFS recursion algorithm is applied, similar
to algorithm used in Section 4.6.2, however this search is not applied to all levels, and if
it matches it has to match fully and immediately. If a match is not found, the current
iteration of the sliding window is discarded and we move on to the next iteration by
moving the window one further.

One important case here is we might not know the width of the sliding window, this
is due to wildcards using the Keene plus, as they can match one or more nodes against
the wildcard. These wildcards might match against (Statement)+. Therefore, we use a
similar technique to the one described in Section 4.6.2, where we have two pointers and
match each statement depending on each pointer.

Output of the matcher

The matches discovered have to be stored such that we can easily find all the nodes
that were matched against wildcards and transfer them into the transformation later. To
make this simpler, we make use an object PairedNodes. This object allows us to easily
find exactly what nodes were matched against each other. The matcher will place this
object into the same tree structure described in 4.4. This means the result of running
the matcher on the user code is a list of TreeNode<PairedNode>.

1 interface PairedNode{
2 codeNode: t.Node[],
3 aplToNode: t.Node
4 }

Since a match might be multiple statements, we use an interface Match, that contains
separate tree structures of PairedNodes. This allows storage of a match with multiple
root nodes.

1 export interface Match {
2 // Every matching Statement in order with each pair
3 statements: TreeNode <PairedNodes >[];
4 }
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4.7 Transforming

To perform the transformation and replacement on each of the matches, we take the
resulting list of matches, the template from the transform to section of the current case
of the proposal, and the Babel AST [4] version of original code. All the transformations
are then applied to the code and we use @babel/generate [3] to generate JavaScript
code from the transformed AST.

An important discovery is to ensure we transform the leafs of the AST first, this is
because if the transformation was applied from top to bottom, it might remove transfor-
mations done using a previous match. This means if we transform from top to bottom
on the tree, we might end up with a(b) |> c(%) in stead of b |> a(%) |> c(%) in the
case of the pipeline proposal. This is quite easily solved in our case, as the matcher looks
for matches from the top of the tree to the bottom of the tree, the matches it discovers
are always in that order. Therefore when transforming, all that has to be done is reverse
the list of matches, to get the ones closest to the leaves of the tree first.

Building the transformation

Before we can start to insert the transform to section into the user’s code AST. We
have to insert all nodes matched against a wildcard in applicable to into their reference
locations.

The first step to achieve this is to extract the wildcards from the match tree. This is
done by recursively searching the match tree for an Identifier or ExpressionStatement
containing an Identifier. To do this, we have a function extractWildcardPairs, which
takes a single match, and extracts all wildcards and places them into a Map<string,

t.Node[]>. Where the key of the map is the identifier used for the wildcard, and the
value is the AST nodes the wildcard was matched against in the users code.

1 function extractWildcardPairs(match: Match): Map <string , t.Node[]> {
2 let map: Map <string , t.Node[]> = new Map();
3
4 function recursiveSearch(node: TreeNode <PairedNodes >) {
5 let name: null | string = null;
6 if (node.element.aplToNode.type === "Identifier") {
7 name = node.element.aplToNode.name;
8 } else if (
9 // Node is ExpressionStatement with Identifier
10 ) {
11 name = node.element.aplToNode.expression.name;
12 }
13
14 if (name) {
15 // Store in the map
16 map.set(name , node.element.codeNode);
17 }
18 // Recursively search the child nodes
19 for (let child of node.children) {
20 recursiveSearch(child);
21 }
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22 }
23 // Start the initial search
24 for (let stmt of match.statements) {
25 recursiveSearch(stmt);
26 }
27 return map;
28 }

Listing 4.6: Extracting wildcard from match

Once the full map of all wildcards has been built, we have to insert the wildcards
into the Babel AST of the transform to template. To do this, we have to traverse the
template and insert the matched nodes of the user’s code. We use @babel/traverse [6]
to traverse the AST, as this provides us with a powerful API for modifying the AST.
@babel/traverse allows us to define visitors, that are executed when traversing spe-
cific types of AST nodes. For this, we define a visitor for Identifier, and a visitor
for ExpressionStatement. These visitors will do exactly the same, however for the
ExpressionStatement, we have to check if the expression is an identifier.

When we visit a node that might be a wildcard, we check if that nodes name is in the
map of wildcards built in Listing 4.6. If the name of the identifier is a key in the wildcard,
we get the value for that key, and perform a node replacement. Where we replace the
identifier with the node from the user’s code that was matched against that wildcard.
See Listing 4.7

1 traverse(transformTo , {
2 Identifier: (path) => {
3 if (wildcardMatches.has(path.node.name)) {
4 let toReplaceWith =

↪→ wildcardMatches.get(path.node.name);
5 if (toReplaceWith) {
6 path.replaceWithMultiple(toReplaceWith);
7 }
8 }
9 },
10 ExpressionStatement: (path) => {
11 if (path.node.expression.type === "Identifier") {
12 let name = path.node.expression.name;
13 if (wildcardMatches.has(name)) {
14 let toReplaceWith = wildcardMatches.get(name);
15 if (toReplaceWith) {
16 path.replaceWithMultiple(toReplaceWith);
17 }
18 }
19 }
20 },
21 });

Listing 4.7: Traversing transform to AST and inserting user context

Due to some wildcards allowing matching of multiple sibling nodes, we have to use
replaceWithMultiple when performing the replacement. This can be seen on line 6 and
16 of Listing 4.7.
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Inserting the template into the AST

We have now created the transform to template with the user’s context. This has to
be inserted into the full AST definition of the users code. To do this we have to locate
exactly where in the user AST this match originated. We can perform an equality check
on the top noe of the user node stored in the match. To do this efficiently, we perform
this check by using this top node as the key to a Map, so if a node in the user AST exists
in that map, we know it was matched.

1 transformedTransformTo.set(
2 match.statements [0]. element.codeNode [0],
3 [
4 transformMatchFaster(wildcardMatches , traToWithWildcards),
5 match ,
6 ]
7 );

To traverse the user AST, we use @babel/traverse [6]. In this case we cannot use
a specific visitor, and therefore we use a generic visitor that applies to every node of the
AST. If the current node we are visiting is a key to the map of transformations, we know
we have to insert the transformed code. This is done similarly to before where we use
replaceWithMultiple.

Some matches have multiple root nodes. This is likely when matching was done with
multiple statements as top nodes. This means we have to remove n-1 following sibling
nodes. Removal of these sibling nodes can be seen on lines 12-15 of Listing 4.8.

1 traverse(codeAST , {
2 enter(path) {
3 if (transformedTransformTo.has(path.node)) {
4 let [traToWithWildcards , match] =
5 transformedTransformTo.get(path.node) as [
6 t.File ,
7 Match
8 ];
9 path.replaceWithMultiple(
10 traToWithWildcards.program.body);
11
12 let siblings = path.getAllNextSiblings ();
13
14 // For multi line applicable to
15 for (let i = 0; i < match.statements.length - 1; i++) {
16 siblings[i]. remove ();
17 }
18
19 // When we have matched top statements with +, we

↪→ might have to remove more siblings
20 for (let matchStmt of match.statements) {
21 for (let codeStmt of matchStmt.element
22 .codeNode) {
23 let siblingnodes = siblings.map((a) => a.node);
24 if (siblingnodes.includes(codeStmt)) {
25 let index = siblingnodes.indexOf(codeStmt);
26 siblings[index ]. remove ();
27 }
28 }
29 }
30 }
31 },
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32 });

Listing 4.8: Inserting transformed matches into user code

There is a special case when a wildcard with a Keene plus, allowing the match of
multiple siblings, means we might have more siblings to remove. In this case, it is not so
simple to know exactly how many we have to remove. Therefore, we have to iterate over
all statements of the match, and check if that statement is still a sibling of the current
one being replace. This behavior can be seen on lines 20-29 of Listing 4.8.

After one full traversal of the user AST. All matches found have been replaced with
their respective transformation. All that remains is generating JavaScript from the trans-
formed AST.

Generating source code from transformed AST

To generate JavaScript from the transformed AST created by this tool, we use a
JavaScript library titled [3]babel/generator. This library is specifically designed for use
with Babel to generate JavaScript from a Babel AST. The transformed AST definition of
the users code is transformed, while being careful to apply all Babel plugins the current
proposal might require.
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Chapter 5

Evaluation

In this chapter we will discuss how we evaluated JSTQL and its related tools. This
chapter will include some testing of the tool on demo code snippets, as well as running
each of the proposals discussed in this thesis on some large scale JavaScript projects.

5.1 Real Life source code

In order to perform actual large scale trial of this program, we have collected some github
projects containing many or large JavaScript files. Every JS file within the project is then
passed through the entire tool, and we will evaluate it based upon the amount of matches
discovered, as well as manual checking that the transformation resulted in correct code
on the matches.

Each case study was evaluated by running this tool on every .js file in the repository,
then collecting the number of matches found in total and how many files were successfully
searched. Evaluating if the transformation was correct is done by manually sampling
output files, and verifying that it passes through Babel Generate [3] without error.

”Pipeline” [15] is very applicable to most files, as the concept it touches (fucntion
calls) is widely used all across JavaScript. This is by far the best result, and it found
matches in almost all files that Babel [5] managed to parse.

The Do proposal [14] is expected to not find as many matches, as code that has not
been written in expression-oriented programming style will not produce many matches.
However, this also highlights how impactful this proposal is to previously written code
compared to ”Pipeline”.

Await to promise also has an expected number of matches, but this evaluation proposal
is not meant to be real life representative. As it is limited to functions containing only a
single await statement and that statement has to be a VariableDeclaration.
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Next.js [13] is one of the largest projects on the web. It is used with React [17] to
enable feature such as server-sire rendering and static site generation.

Proposal Matches found Files with matches Files processed

”Pipeline” 242079 1912 3340
”Do” expression 480 111 3340
Await to Promise 7000 574 3340

Figure 5.1: Evaluation with Next.js source code

Three.js [22] is a library for 3D rendering in JavaScript. It is written purely in
JavaScript and uses GPU for 3D calculations. It being a popular JavaScript library,
and being written in mostly pure JavaScript makes it a good case study for our tool. It
currently sits at over 1 million downloads weekly.

Proposal Matches found Files with matches Files searched

Pipeline 84803 1117 1384
”Do” expression 277 55 1384
Await to Promise 186 114 1384

Figure 5.2: Evaluation with Three.js source code

React [17] is a graphical user interface library for JavaScript, it facilitates the creation
of user interfaces for both web and native platforms. React is based upon splitting a user
interface into components for simple development. It is currently one of the most popular
libraries for creating web apps and has over 223000 stars on Github.

Proposal Matches found Files with matches Files searched

”Pipeline” 16353 1266 3572
”Do” expression 79 60 2051
Await to Promise 107 89 3572

Figure 5.3: Evaluation with React source code

Bootstrap [8] is a front-end framework used for creating responsive and mobile-first
websites, it comes with a variety of built-in components, as well as a built in styling.
This styling is also customizable using CSS. This library is a good evaluation point for
this thesis as it is written in pure JavaScript and is used by millions of developers.
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Proposal Matches found Files with matches Files searched

””Pipeline” 13794 109 115
”Do” expression 13 8 115
Await to Promise 0 0 115

Figure 5.4: Evaluation with Bootstrap source code

Atom [1] is a text editor made in JavaScript using the Electron framework. It was
created to give a very minimal and modular text editor. It was bought by Microsoft, and
later discontinued in favor for Visual Studio Code.

Proposal Matches found Files with matches Files searched

”Pipeline” 40606 361 401
”Do” expression 46 26 401
Await to Promise 8 6 401

Figure 5.5: Evaluation with Atom source code

5.1.1 Example transformations

Highlights of transformations from evaluation

1 tracks.push( parseKeyframeTrack( jsonTracks[ i ] ).scale( frameTime )
↪→ );

1 frameTime
2 |> (jsonTracks[i] |> parseKeyframeTrack (%)).scale (%)
3 |> tracks.push (%);

Transformation taken from three.js/src/animation/AnimationClip.js

1 const logger = createLogger ({
2 storagePath: join(__dirname , ’.progress -estimator ’),
3 });

1 const logger = {
2 storagePath: __dirname |> join(%, ’.progress -estimator ’)
3 } |> createLogger (%);

”Pipeline” transformation, taken from react/scripts/devtools/utils.js
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1 if (isElement(content)) {
2 this._putElementInTemplate(getElement(content), templateElement)
3 return
4 }

1 if (content |> isElement (%)) {
2 content |> getElement (%) |> this._putElementInTemplate (%,

↪→ templateElement);
3 return;
4 }

”Pipeline” transformation, taken from bootstrap/js/src/util/template-factory.js

1 for (const file of typeFiles) {
2 const content = await fs.readFile(join(styledJsxPath , file), ’utf8’)
3 await fs.writeFile(join(typesDir , file), content)
4 }

1 for (const file of typeFiles) {
2 const content = await (styledJsxPath |> join(%, file) |>

↪→ fs.readFile(%, ’utf8’));
3 await (typesDir |> join(%, file) |> fs.writeFile (%, content));
4 }

”Pipeline” transformation, taken from next.js/packages/next/taskfile.js

1 if (repo && repo.onDidDestroy) {
2 repo.onDidDestroy (() =>
3 this.repositoryPromisesByPath.delete(pathForDirectory)
4 );
5 }

1 if (repo && repo.onDidDestroy) {
2 (() => pathForDirectory |>

↪→ this.repositoryPromisesByPath.delete (%)) |>
↪→ repo.onDidDestroy (%);

3 }

”Pipeline” transformation, taken from atom/src/project.js

1 await check(async () => {
2 const html = await browser.eval(’document.documentElement.innerHTML ’)
3 return html.match (/ iframe /) ? ’fail’ : ’success ’
4 }, /success /)

1 await check(do {
2 const html = await browser.eval(’document.documentElement.innerHTML ’);
3 html.match(/ iframe /) ? ’fail’ : ’success ’
4 }, /success /);

”Do expression” transformation, taken from next.js/test/integration/typescript-hmr/index.test.js
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1 async function getCurrentRules () {
2 const res = await fetch(
3 ‘https://api.github.com/repos/vercel/next.js/branches/canary/protection ‘,
4 {
5 headers: {
6 Accept: ’application/vnd.github+json’,
7 Authorization: ‘Bearer ${authToken}‘,
8 ’X-GitHub -Api -Version ’: ’2022 -11 -28’,
9 },
10 }
11 )
12
13 if (!res.ok) {
14 throw new Error(
15 ‘Failed to check for rule ${res.status} ${await res.text()}‘
16 )
17 }
18 const data = await res.json()
19
20 return {
21 // Massive JS Object
22 }
23 }

1 async function getCurrentRules () {
2 return

↪→ fetch(‘https://api.github.com/repos/vercel/next.js/branches/canary/protection ‘,
↪→ {

3 headers: {
4 Accept: ’application/vnd.github+json’,
5 Authorization: ‘Bearer ${authToken}‘,
6 ’X-GitHub -Api -Version ’: ’2022 -11 -28’
7 }
8 }).then(async res => {
9 if (!res.ok) {
10 throw new Error(‘Failed to check for rule ${res.status} ${await

↪→ res.text()}‘);
11 }
12 const data = await res.json();
13 return {
14 // Massive JS object
15 };
16 });
17 }

”Await to Promise” transformation, taken from next.js/test/integration/typescript-hmr/index.test.js
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Chapter 6

Related Work

In this chapter, we present work related to other query languages for source code, aspect-
oriented programming, some code querying methods, and other JavaScript parsers. This
all relates to the work described in this thesis.

Aspect-Oriented Programming

Aspect-oriented programming is a programming paradigm that allows for increased mod-
ularity by allowing for a high degree of separation of concerns, specifically focusing on
cross-cutting concerns.

Cross-cutting concerns are aspects of a software program or system that have an effect
at multiple levels, cutting across the main functional requirements. Such aspects are often
related to security, logging, and error handling, which are all

In AOP, one creates an aspect, which is a module that contains some cross-cutting
concern the developer wants to achieve, this can be logging, error handling or other
concerns not related to the original classes it should applied to. An aspect contains
Advice,which is the specific code executed when certain conditions of the program are
met, an example of these are before advice, which is executed before a method executes,
after advice, which is executed after a method regardless of the methods outcome, and
around advice, which surrounds a method execution. Contained within the aspect is
also a Pointcut, which is the set of criteria determining when the aspect is meant to be
executed. This can be at specific methods, or when specific constructors are called etc.

Aspect oriented programming is similar to this project in that to define where Point-
cuts are placed, we have to define some structure and the AOP library has to search
the code execution for events triggering the pointcut and run the advice defined within
the aspect of that given pointcut. Essentially it performs a re-write of the code during
execution to add functionality to multiple places in the executing code.
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Other source code query languages

In order to allow for simple analysis and refactoring of code, there already exists query
languages for querying code. These languages use several methods to allow for querying
code based on specific paradigms such as Logical queries, Declarative queries, or SQL
like queries. All provide similar functionality of being able to query code. In this section
we will look some of these languages for querying source code, and how they relate to
JSTQL developed in this thesis.

Browse-By-Query

Browse-By-Query is a language created for Java that analyses Java Bytecode files, and
builds a database structure to represent the code classes, method calls, and other sections
contained within the code. The language uses english-like queries combined with filtering
and set operators to allow for more complex queries. This language was created as a
way to browse large code-bases like one is browsing a database. Since BBQ builds the
source code into something resembling a database, queries can be done with respect to
each objects relationship in the original code, and complex and advanced queries based
on relationships are possible using this method.

.QL

.QL is an object-oriented query language. It supports querying a wide array of data
structures, code being one of them. [35].QL has a commercial implementation Semmle-
Code, which comes with a full editor and various pre-defined code transformations that
might be useful for the end developer.

PMD XPath

PMD is the most versatile query language for Java source code querying out of all the
ones explored in this section. [35]PMD supports querying of all Java constructs , it has
this wide support due to constructing the entire codebase in XML format. This language
was build for static code analysis, and therefore is a great way to perform queries on
static code, it is mostly used as a tool for code editors to enforce programming styles.

49



Jackpot

[31]Jackpot is a query language created for the [32]Apache Netbeans platform, it has
since been mostly renamed to Java Declarative Hints Language, we will continue to refer
to it as Jackpot in this section. The language uses declarative patterns to define source
code queries, these queries are used in conjunction with multiple rewrite definitions. This
is used in the Apache Netbeans suite of tools to allow for declarative refactoring of code.

This is quite similar to the form of JSTQL , as both language define som query by
using similar structure, in Jackpot you define a pattern, then every match of that pattern
can be re-written to a fix-pattern, each fix-pattern can have a condition attached to it.
This is quite similar to the applicable to and transform to sections of JSTQL . Jackpot
also supports something similar to the wildcards in JSTQL , as you can define variables in
the pattern definition and transfer them over to the fix-pattern definition. This is closely
related to the definition of wildcards in JSTQL , though without type restrictions and
notation for matching more than one AST node.

JetBrains structural search

JetBrains integrated development environments have a feature that allows for [19] struc-
tural search and replace. This feature is intended for large code bases where a developer
wants to perform a search and replace based on syntax and semantics, not just a regular
text based search and replace. A search is applied to specific files of the codebase or the
entire codebase. It does not recursively check the entire static structure of the code, but
this can be specified in the user interface of structural search and replace.

When doing structural search in Jetbrains IntelliJ IDEA, templates are used to
describe the query used in the search. These templates use variables described with
$variable$, these allow for transferring context to the structural replace.

This tool is an interactive exprience, where each match is showcased in the find tool,
and the developer can decide which matches to apply the replace template to. This allows
for error avoidance and a stricter search that is verified by humans. If the developer wants,
they do not have to verify each match and just replace everything.

When comparing this tool to JSTQL and its corresponding program, there are some
similarities. They are both template based, which means a search uses a template to
define query, both templates contain variables/wildcards in order to match against a free
section, and the replacing structure is also a template based upon those same variables.
A way of matching the variables/wildcards of structural search and replace also exists,
one can define the amount of X node to match against, similar to the + operator used
in JSTQL . A core difference between JSTQL and structural search and replace is the
variable type system. When performing a match and transformation in JSTQL the types
are used extensively to limit the match against the wildcards, while this limitation is not
possible in structural search and replace.
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6.1 Other JavaScript parsers

Speedy Web Compiler

[18]Speedy Web Compiler is a library created for parsing JavaScript and other dialects
like JSX, TypeScript faster. It is written in Rust and advertises faster speeds than Babel
and is used by large organizations creating applications and tooling for the web platform.

Similar to [2]Babel, Speedy Web Compiler is an extensible parser that allows for
changing the specification of the parsed program. Its extensions are written in Rust.
While it does not have as mature of a plugin system as Babel, its focus on speed makes
it widely used for large scale web projects.

Speedy Web Compiler supports features out of the box such as Compilation, used
for TypeScript and other languages that are compiled down to JavaScript. Bundling,
which takes multiple JavaScript/TypeScript files and bundles them into a single out-
put file, while handling naming collisions. Minification, to make the bundle size of a
project smaller, transforming for use with WebAssembly, and custom plugins to change
the specification of the languages parsed by SWC.

Compared to Babel used in this paper, SWC focuses on speed, as its main selling
point is a faster way of developing web projects.

Acorn

Acorn is another parser written in JavaScript to parser JavaScript and it’s related lan-
guages. Acorn focuses on plugin support in order to support extending and redefinition
on how it’s internal parser works. It has a very similar syntax to and has it’s own tree
traversal library Acorn Walk. [2]Babel is originally a fork of Acorn, while Babel has since
had a full rewrite. Acorn focuses heavily on supporting third party plugins, which Babel
does not. However Acorn was not a good fit for this project, as Acorn only supports
Stage 4 proposals, and support for proposals in the early stages is a requirement.

6.2 Model-to-Model transformations
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Chapter 7

Future Work

Provide access and gather feedback. This project is build upon creating a tool for
users of EcmaScript to see new proposals within their own codebase. The idea behind
this is to use the users familiarity to showcase new syntactic proposals, and get valuable
feedback to the committee developing the ECMA-262 standard. This means making the
definitions of a proposal in JSTQL and this tool available to end-users to execute using
their own code. This can come in multiple forms, we suggest some ideas, such as a
playground on the web, an extension for Visual Studio Code, or to be used in github pull
requests.

Supporting other languages. The idea of showcasing changes to a programming
language by transforming user code is not only limited to EcmaScript, and could be
applied to many other programming languages using a similar development method to
EcmaScript. The developers of a language could write definitions of new changes for their
respective language, and use a similar tool to the one discussed in this thesis to showcase
possible new changes.

Parameterized specifications. The current form of JSTQL supports writing each
template as its own respective case, but multiple templates might be very similar and
could be written using generics that are shared between case definitions. Introducing this
might give a simpler way of writing more complex definitions of a proposal transformation
by re-using generic type parameters for the wildcards used in the transformations.

Fully self-hosting JSTQL-SH . The current version of JSTQL-SH relies on this
tools parser to generate the AST for the type expressions used for matching by wildcards.
This might make this tool more difficult to adopt for the committee. Therefore adding
functionality for writing these type expressions purely in JavaScript and allowing for the
use of JavaScript as its own meta language is an interesting avenue to explore.

Support for custom proposal syntax. Currently this tool relies heavily on that a
proposal is supported by [2]Babel. This makes the tool quite limited in what proposals
could be defined and transformed due to relying on Babel for parsing the templates and
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generating the output code. Introducing some way of defining new syntax for a proposal
in the proposal definition, and allowing for parsing JavaScript containing that specific
new syntax would limit the reliance on Babel, and allow for defining proposals earlier in
the development process. This can possibly be done by implementing a custom parser
inside this tool that allows defining custom syntax for specific new proposals.
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Appendix A

Generated code from Protocol buffers

1 export interface Identifier extends WildcardNode {
2 nodeType: "Identifier";
3 name: string;
4 }
5
6 export interface Wildcard {
7 nodeType: "Wildcard";
8 identifier: Identifier;
9 expr: TypeExpr;
10 star: boolean;
11 }
12
13 export interface WildcardNode {
14 nodeType: "BinaryExpr" | "UnaryExpr" | "GroupExpr" | "Identifier";
15 }
16
17 export type TypeExpr = BinaryExpr | UnaryExpr | PrimitiveExpr;
18
19 export type BinaryOperator = "||" | "&&";
20
21 export type UnaryOperator = "!";
22
23 export interface BinaryExpr extends WildcardNode {
24 nodeType: "BinaryExpr";
25 left: UnaryExpr | BinaryExpr | PrimitiveExpr;
26 op: BinaryOperator;
27 right: UnaryExpr | BinaryExpr | PrimitiveExpr;
28 }
29 export interface UnaryExpr extends WildcardNode {
30 nodeType: "UnaryExpr";
31 op: UnaryOperator;
32 expr: PrimitiveExpr;
33 }
34
35 export type PrimitiveExpr = GroupExpr | Identifier;
36
37 export interface GroupExpr extends WildcardNode {
38 nodeType: "GroupExpr";
39 expr: TypeExpr;
40 }

Listing A.1: TypesScript types of Type Expression AST
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