
University of Bergen
Department of Informatics

Title of your master thesis

Author: Your name
Supervisors: Name of supervisors

May, 2024

Abstract

Lorem ipsum dolor sit amet, his veri singulis necessitatibus ad. Nec insolens periculis ex.
Te pro purto eros error, nec alia graeci placerat cu. Hinc volutpat similique no qui, ad
labitur mentitum democritum sea. Sale inimicus te eum.

No eros nemore impedit his, per at salutandi eloquentiam, ea semper euismod meliore
sea. Mutat scaevola cotidieque cu mel. Eum an convenire tractatos, ei duo nulla molestie,
quis hendrerit et vix. In aliquam intellegam philosophia sea. At quo bonorum adipisci.
Eros labitur deleniti ius in, sonet congue ius at, pro suas meis habeo no.

Acknowledgements

Est suavitate gubergren referrentur an, ex mea dolor eloquentiam, novum ludus suscipit
in nec. Ea mea essent prompta constituam, has ut novum prodesset vulputate. Ad
noster electram pri, nec sint accusamus dissentias at. Est ad laoreet fierent invidunt, ut
per assueverit conclusionemque. An electram efficiendi mea.

Your name

Sunday 12th May, 2024

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Figures . 1

2 Background 2
2.1 Proposals . 2

3 Collecting User Feedback for Syntactic Proposals 3
3.1 The core idea . 3

3.1.1 Applying a proposal . 4
3.2 Applicable proposals . 4

3.2.1 Syntactic Proposals . 5
3.2.2 Simple example of a syntactic proposal 5
3.2.3 [5, Discard Bindings] . 5
3.2.4 Pipeline Proposal . 8
3.2.5 Description of Pipeline proposal 9
3.2.6 Do proposal . 10
3.2.7 Await to Promise . 11

3.3 Searching user code for applicable snippets 11
3.3.1 JSTQL . 12
3.3.2 Matching . 12
3.3.3 JSTQL custom matching types 13
3.3.4 Transforming . 13
3.3.5 Structure of JSTQL . 13

3.4 Using the JSTQL with an actual syntactic proposal 15
3.4.1 Pipeline Proposal . 15
3.4.2 Do Proposal . 16

4 Implementation 18
4.1 Architecture . 18
4.2 Parsing JSTQL using Langium . 18

4.2.1 Langium . 20
4.3 Pre-parsing . 22
4.4 Using Babel to parse . 24
4.5 Matching . 26
4.6 Transforming . 26

i

4.7 Generating . 26

Bibliography 27

A Generated code from Protocol buffers 28

ii

List of Figures

4.1 Tool architecture . 19

iii

List of Tables

iv

Listings

3.1 Example of imaginary proposal optional let to int for declaring nu-
merical literal variables . 5

3.2 Example of unpacking Object . 6
3.3 Example of unpacking Array . 6
3.4 Example discard binding with variable discard 6
3.5 Example Object binding and assignment pattern 6
3.6 Example Array binding and assignment pattern. It is not clear to the

reader that in line 8 we are consuming 2 or 3 elements of the iterator. In
the example on line 13 we see that is it more explicit how many elements
of the iterator is consumed . 6

3.7 Example discard binding with function parameters. This avoids needlessly
naming parameters of a callback function that will remain unused. 7

3.8 Grammar of Discard Binding . 7
3.9 Example of deeply nested call . 8
3.10 Example of chaining calls . 9
3.11 Example from jquery . 9
3.12 Example from unpublish . 9
3.13 Example from underscore.js . 9
3.14 Example from ramda.js . 10
3.15 Example of do expression . 10
3.16 Example of await to promises . 11
3.17 Example of a wildcard . 12
3.18 See 3.17 contains identifier expr1, and we refer to the same in this example,

the only transformation happening here is rewriting let to const. 13
3.19 Example of section containing the pipeline proposal 13
3.20 Example of pair section . 14
3.21 Example of applicable to section . 14
3.22 Example of transform to section . 14
3.23 JSTQL definition of a proposal . 15
3.24 Example of Pipeline Proposal definition in JSTQL 15
3.25 Definition of Do Proposal in JSTQL . 16
4.1 Definition of JSTQL in Langium . 20
4.2 Simple definition of a Tree structure in TypeScript 25
A.1 Source code of something . 28

v

Chapter 1

Introduction

Intro goes here

1.1 Background

1.1.1 Figures

1

Chapter 2

Background

2.1 Proposals

A proposal for EcmaScript is a suggestion for a change to the language. These changes
come with a set of problems that if the proposal is included as a part of EcmaScript,
those problems should be solved by utilizing the additions contained within the proposal.

2

Chapter 3

Collecting User Feedback for
Syntactic Proposals

The goal for this project is to utilize users familiarity with their own code to gain early
and worthwhile user feedback on new syntactic proposals for EcmaScript.

3.1 The core idea

THIS IS TOO ABRUPT OF AN INTRODUCTION, MORE GENERAL AL-
MOST REPEAT OF BACKGGROUND GOES HERE

CURRENT VERSION vs FUTURE VERSION instead of old way

DO NOT DISCUSS TOOL HERE

Users of EcmaScript have a familiarity with code they themselves have written. This
means they have knowledge of how their own code works and why they might have written
it a certain way. This project aims to utilize this pre-existing knowledge to showcase new
proposals for EcmaScript. Showcasing proposals this way will allow users to focus on
what the proposal actually entails, instead of focusing on the examples written by the
proposal author.

Further in this chapter, we will be discussing the old and new way of programming
in EcmaScript. What we are referring to in this case is with set of problems a proposal is
trying to solve, if that proposal is allowed into EcmaScript as part of the language, there
will be a new way of solving said problems. The old way is the current status quo when
the proposal is not part of EcmaScript, and the new way is when the proposal is part of
EcmaScript and we are utilizing the new features of said proposal.

The program will allow the users to preview proposals way before they are part of the
language. This way the committee will get feedback from users of the language earlier in
the proposal process, this will ideally allow for a more efficient process of adding proposals
to EcmaScript.

3

3.1.1 Applying a proposal

The way this project will use the pre-existing knowledge a user has of their own code is
to use that code as base for showcasing a proposals features. Using the users own code as
base requires the following steps in order to automatically implement the examples that
showcase the proposal inside the context of the users own code.

The tool has to identify where the features and additions of a proposal could have been
used. This means identifying parts of the users program that use pre-existing EcmaScript
features that the proposal is interacting with and trying to solve. This will then identify
all the different places in the users program the proposal can be applied. This step is
called matching in the following chapters

Once the tool has matched all parts of the program that the proposal could be applied,
the users code has to be transformed to use the feature/s the proposal is trying to
implement. This step also includes keeping the context and functionality of the users
program the same, so variables and other context related concepts have to be transferred
over to the transformed code.

The output of the previous step is then a set of code pairs, where one a part of the
users original code, and the second is the transformed code. The transformed code is
then ideally a perfect replacement for the original user code if the proposal is part of
EcmaScript. These pairs are used as examples to present to the user, presented together
so the user can see their original code together with the transformed code. This allows
for a direct comparison and an easier time for the user to understand the proposal.

The steps outlined in this section require some way of defining matching and trans-
forming of code. This has to be done very precisely and accurately in order to avoid bugs.
Imprecise definition of the proposal might lead to transformed code not being a direct
replacement for the code it was based upon. For this we suggest two different methods, a
definition written in a custom DSL JSTQL and a definition written in a self-hosted way
only using EcmaScript as a language as definition language. Read more about this in
SECTION HERE.

3.2 Applicable proposals

A proposal for EcmaScript is a suggested change for the language, in the case of Ec-
maScript this comes in the form of an addition to the language, as EcmaScript does not
allow for breaking changes. There are many different kinds of proposals, this project
focuses exclusively on Syntactic Proposals.

4

3.2.1 Syntactic Proposals

A syntactic proposal, is a proposal that contains only changes to the syntax of a language.
This means, the proposal contains either no, or very limited change to functionality, and
no changes to semantics. This limits the scope of proposals this project is applicable to,
but it also focuses solely on some of the most challenging proposals where the users of
the language might have the strongest opinions.

3.2.2 Simple example of a syntactic proposal

Consider a imaginary proposal optional let to int for declaring numerical literal
variables. This proposal describes adding an optional keyword for declaring numerical
variables if the expression of the declaration is a numerical literal.

This proposal will look something like this:

1 // Original code
2 let x = 100;
3 let b = "Some String";
4 let c = 200;
5
6 // Code after application of proposal
7 int x = 100;
8 let b = "Some String";
9 let c = 200;

Listing 3.1: Example of imaginary proposal optional let to int for declaring
numerical literal variables

See that in 3.1 the change is optional, and is not applied to the declaration of c, but
it is applied to the declaration of x. Since the change is optional to use, and essentially is
just syntax sugar, this proposal does not make any changes to functionality or semantics,
and can therefore be categorized as a syntactic proposal.

3.2.3 [5, Discard Bindings]

The proposal Discard Bindings is classified as a Syntactic Proposal, as it contains no
change to the semantics of EcmaScript. This proposal is created to allow for discarding
objects when using the feature of unpacking objects/arrays on the left side of an assign-
ment. The whole idea of this proposal is to avoid declaring unused temporary variables.

Unpacking when doing an assignment refers to assigning internal fields of an objec-
t/array directly in the assignment rather than using a temporary variable. See 3.2 for an
example of unpacking an object and 3.3.

5

1 // previous
2 let temp = { a:1, b:2, c:3, d:4 };
3 let a = temp.a;
4 let b = temp.b;
5
6 // unpacking
7 let {a,b ... rest} = { a:1, b:2, c:3, d:4 };
8 rest; // { c:3, d:4 }

Listing 3.2: Example of unpacking Object

1 // previous
2 let tempArr = [0, 2, 3, 4];
3 let a = tempArr [0]; // 0
4 let b = tempArr [1] // 2
5
6 // unpacking
7 let [a, b, _1 , _2] = [0, 2, 3, 4]; // a = 0, b = 2, _1 = 3, _2 = 4

Listing 3.3: Example of unpacking Array

In EcmaScripts current form, it is required to assign every part of an unpacked ob-
ject/array to some identifier. The current status quo is to use as a sign it is meant to
be discarded. This proposal suggests a specific keyword void to be used as a signifier
whatever is at that location should be discarded.

This feature is present in other languages, such as Rust wildcards, Python wildcards
and C# using statement and discards. In most of these other languages, the concept
of discard is a single . In EcmaScript the token is a valid identifier, therefore this
proposal suggests the use of the keyword void. This keyword is already is reserved as
part of function definitions where a function is meant to have no return value.

This proposal allows for the void keyword to be used in a variety of contexts. Some
simpler than others but all following the same pattern of allowing discarding of bindings
to an identifier. It is allowed anywhere the BindingPattern, LexicalBinding or Destruc-
turingAssignmentTarget features are used in EcmaScript. This means it can be applied
to unpacking of objects/arrays, in callback parameters and class methods.

1 using void = new UniqueLock(mutex);
2 // Not allowed on top level of var/let/const declarations
3 const void = bar(); // Illegal

Listing 3.4: Example discard binding with variable discard

1 let {b:void , ... rest} = {a:1, b:2, c:3, d:4}
2 rest; // {a:1, c:3, d:4};

Listing 3.5: Example Object binding and assignment pattern

1 function* gen() {
2 for (let i = 0; i < Number.MAX_SAFE_INTEGER; i++) {
3 console.log(i);
4 yield i;
5 }
6 }
7
8 const iter = gen();
9 const [a, ,] = iter;

6

10 // prints:
11 // 0
12 // 1
13
14 const [a, void] = iter; // author intends to consume two elements
15 // vs.
16 const [a, void , void] = iter; // author intends to consume three

↪→ elements

Listing 3.6: Example Array binding and assignment pattern. It is not clear to the reader
that in line 8 we are consuming 2 or 3 elements of the iterator. In the example on line
13 we see that is it more explicit how many elements of the iterator is consumed

1 // project an array values into an array of indices
2 const indices = array.map((void , i) => i);
3
4 // passing a callback to ‘Map.prototype.forEach ‘ that only cares about
5 // keys
6 map.forEach ((void , key) => { });
7
8 // watching a specific known file for events
9 fs.watchFile(fileName , (void , kind) => { });
10
11 // ignoring unused parameters in an overridden method
12 class Logger {
13 log(timestamp , message) {
14 console.log(‘${timestamp }: ${message}‘);
15 }
16 }
17
18 class CustomLogger extends Logger {
19 log(void , message) {
20 // this logger doesn’t use the timestamp ...
21 }
22 }
23
24 // Can also be utilized for more trivial examples where _ becomes
25 // cumbersome due to multiple discarded parameters.
26 doWork ((_, a, _1 , _2 , b) => {});
27 // vs.
28 doWork ((void , a, void , void , b) => {
29 });

Listing 3.7: Example discard binding with function parameters. This avoids needlessly
naming parameters of a callback function that will remain unused.

The grammar of this proposal is precisely specified in the specification found in the
proposal definition on github.

1 var [void] = x; // via: BindingPattern :: ‘void ‘
2 var {x:void}; // via: BindingPattern :: ‘void ‘
3
4 let [void] = x; // via: BindingPattern :: ‘void ‘
5 let {x:void}; // via: BindingPattern :: ‘void ‘
6
7 const [void] = x; // via: BindingPattern :: ‘void ‘
8 const {x:void} = x; // via: BindingPattern :: ‘void ‘
9
10 function f(void) {} // via: BindingPattern :: ‘void ‘
11 function f([void]) {} // via: BindingPattern :: ‘void ‘
12 function f({x:void}) {} // via: BindingPattern :: ‘void ‘
13
14 ((void) => {}); // via: BindingPattern :: ‘void ‘
15 (([void]) => {}); // via: BindingPattern :: ‘void ‘
16 (({x:void}) => {}); // via: BindingPattern :: ‘void ‘

7

https://github.com/tc39/proposal-discard-binding?tab=readme-ov-file#object-binding-and-assignment-patterns

17
18 using void = x; // via: LexicalBinding : ‘void ‘ Initializer
19 await using void = x; // via: LexicalBinding : ‘void ‘ Initializer
20
21 [void] = x; // via: DestructuringAssignmentTarget : ‘void ‘
22 ({x:void} = x); // via: DestructuringAssignmentTarget : ‘void ‘

Listing 3.8: Grammar of Discard Binding

3.2.4 Pipeline Proposal

The pipeline proposal is a Syntactic proposal with no change to functionality of Ec-
maScript, it focuses solely on solving problems related to nesting of function calls and
other expressions that allow for a topic reference.

The pipeline proposal aims to solve two problems with performing consecutive opera-
tions on a value. In EcmaScript there are two main styles of achieving this functionality
currently. Nesting calls and chaining calls, these two come with a differing set of chal-
lenges when used.

Nesting calls is mainly an issue related to function calls with one or more arguments.
When doing many calls in sequence the result will be a deeply nested call expression. See
in 3.9.

Challenges with nested calls

• The order of calls go from right to left, which is opposite of the natural reading
direction users of EcmaScript are used to

• When introduction functions with multiple arguments in the middle of the nested
call, it is not intuitive to see what call it belongs to.

Benefits of nested calls

• Does not require special design thought to be used

1 // Deeply nested call with single arguments
2 function1(function2(function3(function4(value))));
3
4 // Deeply nested call with multi argument functions
5 function1(function2(function3(value2 , function4)), value1);

Listing 3.9: Example of deeply nested call

Nesting solves some of the issues relating to nesting, as it allows for a more natural
reading direction left to right when identifying the sequence of call. However, solving
consecutive operations using chaining has its own set of challenges when used

8

3.2.5 Description of Pipeline proposal

Challenges with chaining calls

• APIs has to be specifically designed with chaining in mind

• Might not even be possible due to external libraries

• Does not support other concepts such as arithmetic operations, array/object literals,
await, yield, etc...

Benefits of chaining calls

• More natural direction of call order

• Arguments of functions are grouped with function name

• Untangles deep nesting

1 // Chaining calls
2 function1 ().function2 ().function3 ();
3
4 // Chaining calls with multiple arguments
5 function1(value1).function2 ().function3(value2).function4 ();

Listing 3.10: Example of chaining calls

The pipeline proposal aims to combine the benefits of these two styles without all the
challenges each method faces.

The main benefit of pipeline is to allow for a similar style to chaining when chaining
has not been specifically designed to be applicable. The idea uses syntactic sugar to
change the order of writing the calls without influencing the API of the functions.

1 // Status quo
2 var minLoc = Object.keys(grunt.config("uglify.all.files"))[0];
3
4 // With pipes
5 var minLoc = grunt.config(’uglify.all.files’) |> Object.keys (%) [0];

Listing 3.11: Example from jquery

1 // Status quo
2 const json = await npmFetch.json(npa(pkgs [0]).escapedName , opts);
3
4 // With pipes
5 const json = pkgs [0] |> npa(%).escapedName |> await

↪→ npmFetch.json(%, opts);

Listing 3.12: Example from unpublish

1 // Status quo
2 return filter(obj , negate(cb(predicate)), context);
3
4 // With pipes
5 return cb(predicate) |> _.negate (%) |> _.filter(obj , %, context);

Listing 3.13: Example from underscore.js

9

1 // Status quo
2 return

↪→ xf[’@@transducer/result ’](obj[methodName](bind(xf[’@@transducer/step’],
↪→ xf), acc));

3
4 // With pipes
5 return xf
6 |> bind (%[’@@transducer/step’], %)
7 |> obj[methodName](%, acc)
8 |> xf[’@@transducer/result ’](%);

Listing 3.14: Example from ramda.js

3.2.6 Do proposal

The [6, Do Proposal] is a proposal meant to bring expression oriented programming
to EcmaScript. Expression oriented programming is a concept taken from functional
programming which allows for combining expressions in a very free manor allowing for a
highly malleable programming experience.

The motivation of the do expression proposal is to create a feature that allows for
local scoping of a code block that is treated as an expression. This allows for complex
code requiring multiple statements to be confined inside its own scope and the resulting
value is returned from the block as an expression. Similar to how a unnamed function is
used currently. The current status quo of how to achieve this behavior is to use unnamed
functions and invoke them immediately, or use an arrow function, these two are equivalent
to a do expression.

The codeblock of a do expression has one major difference from these equivalent
functions, as it allows for implicit return of the final statement in the block. This only
works if the statement does not contain a final line end (;).

The local scoping of this feature allows for a cleaner environment in the parent scope of
the do expression. What is meant by this is for temporary variables and other assignments
used once can be enclosed inside a limited scope within the do block. Allowing for a
cleaner environment inside the parent scope where the do block is defined.

,

1 // Current status quo
2 let x = () => {
3 let tmp = f();
4 return tmp + tmp + 1;
5 };
6
7 // Using a immediately invoked function
8 let x = function (){
9 let tmp = f();
10 return tmp + tmp + 1;
11 }();
12
13 // Using do expression

10

14 let x = do {
15 let tmp = f();
16 tmp + tmp + 1
17 }

Listing 3.15: Example of do expression

This proposal has some limitations on its usage. Due to the implicit return of the
final statement you cannot end a do expression with an if without and else, or a loop.

3.2.7 Await to Promise

This section covers an imaginary proposal that was used to evaluate the program devel-
oped in this thesis. This imaginary proposal is less of a proposal and more of just a pure
JavaScript transformation example. What this proposal wants to achieve is re-writing
from using await so use promises.

In order to do this an equivalent way of writing code containing await in the syntax
of promises had to be identified. In this case, the equivalent way of expressing this is
consuming the rest of the scope await was written in and place it inside a then(() =>

) function.

1 // Code containing await
2
3 async function a(){
4 let something = await asyncFunction ();
5 let c = something + 100;
6 return c + 1;
7 }
8
9 // Re -written using promises
10 function a(){
11 return asyncFunction ().then((something) => {
12 let c = something + 100;
13 return c;
14 })
15 }
16
17 In the example \ref*{ex:awaitToPromise} we change \texttt{a} from

↪→ async to synchronous , but we still return a promise which
↪→ ensures everything using the function \texttt{a} to still get
↪→ the expected value.

Listing 3.16: Example of await to promises

3.3 Searching user code for applicable snippets

In order to identify snippets of code in the users codebase where a proposal is applicable
we need some way to define patterns of code where we can apply the proposal. To do
this, a DSL titled JSTQL is used.

11

3.3.1 JSTQL

In order to allow for the utilization of the users code. We have to identify snippets of
the users code that some proposal is applicable to. In order to do this, we have designed
a DSL called JSTQL JavaScript Template Query Language. This DSL will contain the
entire definition used to identify and transform user code in order to showcase a proposal.

3.3.2 Matching

In order to identify snippets of code a proposal is applicable to, we use templates of
JavaScript. These templates allow for wildcard sections where it can match against
specific AST nodes. These wildcard sections are also used to transfer the context of the
code matched into the transformation.

A template containing none of these wildcards is matched exactly. This essentially
means the match will be a direct code search for snippets where the AST of the users
code match the template exactly.

The wildcards are written inside a block denoted by ¡¡ WILDCARD ¿¿. Each wildcard
has to have a DSL identifier, a way of referring to that wildcard in the definition of the
transformation, and a wildcard type

Each wildcard has to have some form of type. These types can be node-types in-
herited from Babels AST definition. This means if you want a wildcard to match any
CallExpression then that wildcard should be of type CallExpression. In order to allow for
multiple node-types to match against a single wildcard, JSTQL allows for sum types for
wildcards, allowing multiple AST node-types to be allowed to a single wildcard definition.

The wildcard type can also be a custom type with special functionality. Some ex-
amples of this is anyRest, which allows for the matcher to match it against multiple
expressions/statements defined within an AST node as a list. As an example this type
could match against any number of statements within a codeblock.

This type definition is also used to define specific behavior the program using this
DSL should perform. One example of this can be found in 3.24, where the DSL function
anyRest is used to allow for any amount of child nodes found together with the wildcard.
This means it is feasible to match against any number of function parameters for example.

1 let variableName = << expr1: CallExpression | Identifier >>;

Listing 3.17: Example of a wildcard

In 3.17 a wildcard section is defined on the right hand side of an assignment statement.
This wildcard will match against any AST node classified as a CallExpression or an
Identifier.

12

3.3.3 JSTQL custom matching types

anyNExprs is a custom DSL matching type. This type allows the matcher to match a
specific section of the JavaScript template against any number of elements stored within
a list on the AST node Object it is currently trying to match. Using this allows for
transferring any number of expression from the match into the transformed code. This
custom type is used in 3.24.

anyNStatements is a custom DSL matching type. This type allows the matcher to
match against any number of Statements within a section of JavaScript. This custom
type is used in 3.25

3.3.4 Transforming

Observe that once the a matching template has been defined, a definition of transfor-
mation has to be created. This transformation has to transfer over the code matched
to a wildcard. This means a way to refer to the wildcard is needed. We do this in a
very similar manner as defining the wildcard, since we have an internal DSL identifier
previously defined in the definition of the matching, all that is needed is to refer to that
identifier. This is done with a similar block definition ¡¡ ¿¿ containing the identifier.

1 const variableName = <<expr1 >>;

Listing 3.18: See 3.17 contains identifier expr1, and we refer to the same in this example,
the only transformation happening here is rewriting let to const.

3.3.5 Structure of JSTQL

JSTQL is designed to mimic the examples already provided by a proposal champion in
the proposals README. These examples can be seen in each of the proposals described
in 3.2.

Define proposal

The first part of JSTQL is defining the proposal, this is done by creating a named
block containing all definitions of templates used for matching alongside their respective
transformation. This section is used to contain everything relating to a specific proposal
and is meant for easy proposal identification by tooling.

1 proposal Pipeline_Proposal{
2
3 }

Listing 3.19: Example of section containing the pipeline proposal

13

Defining a pair of template and transformation

Each proposal will have 1 or more definitions of a template for code to identify in the users
codebase, and its corresponding transformation definition. These are grouped together
in order to have a simple way of identifying the corresponding pairs. This section of
the proposal is defined by the keyword pair and a block to contain its related fields. A
proposal will contain 1 or more of this section. This allows for matching many different
code snippets and showcasing more of the proposal than a single concept the proposal
has to offer.

1 pair PAIR_NAME {
2
3 }

Listing 3.20: Example of pair section

Template used for matching

In order to define the template used to match, we have another section defined by the
keyword applicable to. This section will contain the template defined using JavaScript
with specific DSL keywords defined inside the template.

1 applicable to {
2
3 }

Listing 3.21: Example of applicable to section

Defining the transformation

In order to define the transformation that is applied to a specific matched code snippet,
the keyword transform to is used. This section is similar to the template section, however
it uses the specific DSL keywords to transfer the context of the matched user code, this
allows us to keep parts of the users code important to the original context it was written
in.

1 transform to{
2
3 }

Listing 3.22: Example of transform to section

14

All sections together

Taking all these parts of JSTQL structure, defining a proposal in JSTQL will look as
follows.

1 proposal PROPOSAL_NAME {
2 pair PAIR_NAME {
3 applicable to {
4
5 }
6 transform to {
7
8 }
9 }
10 pair PAIR_NAME {
11 applicable to
12 }
13
14 pair
15 }

Listing 3.23: JSTQL definition of a proposal

3.4 Using the JSTQL with an actual syntactic pro-

posal

In this section some examples of how a JSTQL definition of each of the proposals discussed
in 3.2 might look. These definitions do not have to cover every single case where the
proposal might be applicable, as they just have to be general enough to create some
amount of examples on any reasonably long code definition a user might use this tool
with.

3.4.1 Pipeline Proposal

The Pipeline Proposal is the easiest to define of the proposals presented in 3.2. This is
due to the proposal being applicable to a very wide array of expressions, and the main
problem this proposal is trying to solve is deep nesting of function calls.

1 proposal Pipeline{
2 pair SingleArgument {
3 applicable to {
4 <<someFunctionIdent >>(<<someFunctionParam: Expression |

↪→ Identifier >>);
5 }
6
7 transform to {
8 <<someFunctionParam >> |> <<someFunctionIdent >>(%);
9 }
10 }
11
12 case MultiArgument {

15

13 applicable to {
14 <<someFunctionIdent >>(
15 <<firstFunctionParam : Expression | Identifier >>,
16 <<restOfFunctionParams: anyRest >>
17);
18 }
19
20 transform to {
21 <<firstFunctionParam >> |> <<someFunctionIdent >>(%,

↪→ <<restOfFunctionParams >>);
22 }
23 }
24 }

Listing 3.24: Example of Pipeline Proposal definition in JSTQL

This first pair definition SingleArgument of the Pipeline proposal will apply to any
CallExpression with a single argument. And it will be applied to each of the deeply
nested callExpressions. The second pair definition MultiArgument will apply to any
CallExpression with 2 or more arguments. This is because we use the custom JSTQL
type anyRest that allows to match against any number of elements in an array stored on
an AST node.

3.4.2 Do Proposal

The [6, Do Proposal] can also be defined with this tool. This definition will never catch
all the applicable sections of the users code, and is very limited in where it might discover
this proposal is applicable. This is due to the Do Proposal introducing an entirely new
way to write JavaScript (Expression-oriented programming). If the user running this
tool has not used the current status-quo way of doing expression-oriented programming
in JavaScript, JSTQL will probably not find any applicable snippets in the users code.
However, in a reasonably large codebase, some examples will probably be discovered.

1 proposal DoExpression{
2 pair arrowFunction{
3 applicable to {
4 () => {
5 <<blockStatements: anyStatementList >>
6 return << returnExpr: Expr >>
7 }
8 }
9 transform to {
10 do {
11 << blockStatements >>
12 << returnExpr >>
13 }
14 }
15 }
16
17 pair immediatelyInvokedUnnamedFunction {
18 applicable to {
19 function (){
20 <<blockStatements: anyNStatements >>
21 return << returnExpr: Expr >>
22 }();
23 }
24

16

25 transform to {
26 do {
27 << blockStatements >>
28 << returnExpr >>
29 }
30 }
31 }
32 }

Listing 3.25: Definition of Do Proposal in JSTQL

17

Chapter 4

Implementation

In this chapter, the implementation of the tool utilizing the JSTQL and JSTQL-SH
will be presented. It will describe the overall architecture of the tool, the flow of data
throughout, and how the different stages of transforming user code are completed.

4.1 Architecture

The architecture of the work described in this thesis is illustrated in Figure 4.1

In this tool, there exists two multiple ways to define a proposal, and each provide the
same functionality, they only differ in syntax and writing-method. One can either write
the definition in JSTQL which utilizes Langium to parse the language, or one can use a
JSON definition, which is more friendly as an API or people more familiar with JSON
definitions.

4.2 Parsing JSTQL using Langium

In this section, the implementation of the parser for JSTQL will be described. This
section will outline the tool Langium, used as a parser-generator to create the AST used
by the tool later to perform the transformations.

18

19

JSTQL Code Self-Hosted JSON

Langium Parser Self-Hosted JSON parser

Prelude BuilderPre-parser

Babel

Custom AST builder

Matcher

Transformer

Generator

Figure 4.1: Overview of tool architecture

4.2.1 Langium

Langium [4] is primarily used to create parsers for Domain Specific Language, these kinds
of parsers output an Abstract Syntax Tree that is later used to create interpreters or other
tooling. In the case of JSTQL we use Langium to generate TypeScript Objects that are
later used as definitions for the tool to do matching and transformation of user code.

In order to generate this parser, Langium required a definition of a Grammar. A
grammar is a set of instructions that describe a valid program. In our case this is a
definition of describing a proposal, and its applicable to, transform to, descriptions. A
grammar in Langium starts by describing the Model. The model is the top entry of the
grammar, this is where the description of all valid top level statements.

In JSTQL the only valid top level statement is the definition of a proposal. This
means our language grammar model contains only one list, which is a list of 0 or many
Proposal definitions. A Proposal definition is denoted by a block, which is denoted by
{...} containing some valid definition. In the case of JSTQL this block contains 1 or
many definitions of Pair.

Pair is defined very similarly to Proposal, as it contains only a block containing a
definition of a Section

The Section is where a single case of some applicable code and its corresponding
transformation is defined. This definition contains specific keywords do describe each of
them, applicable to denotes a definition of some template JSTQL uses to perform the
matching algorithm. transform to contains the definition of code used to perform the
transformation.

In order to define exactly what characters/tokens are legal in a specific definition,
Langium uses terminals defined using Regular Expressions, these allow for a very specific
character-set to be legal in specific keys of the AST generated by the parser generated by
Langium. In the definition of Proposal and Pair the terminal ID is used, this terminal
is limited to allow for only words and can only begin with a character of the alphabet
or an underscore. In Section the terminal TEXT is used, this terminal is meant to allow
any valid JavaScript code and the custom DSL language described in 3.3.1. Both these
terminals defined allows Langium to determine exactly what characters are legal in each
location.

1 grammar Jstql
2
3 entry Model:
4 (proposals += Proposal)*;
5
6 Proposal:
7 ’proposal ’ name=ID "{"
8 (pair+=Pair)+
9 "}";
10
11 Pair:
12 "pair" name=ID "{"
13 aplTo=ApplicableTo

20

14 traTo=TraTo
15 "}";
16
17 ApplicableTo:
18 "applicable" "to" "{"
19 apl_to_code=STRING
20 "}";
21 TraTo:
22 "transform" "to" "{"
23 transform_to_code=STRING
24 "}";
25 hidden terminal WS: /\s+/;
26 terminal ID: /[_a-zA-Z][\w_]*/;
27 terminal STRING: /"[^"]*"|’[^’]*’/;

Listing 4.1: Definition of JSTQL in Langium

In the case of JSTQL , we are not actually implementing a programming language
meant to be executed. We are using Langium in order to generate an AST that will be
used as a markup language, similar to YAML, JSON or TOML. The main reason for
using Langium in such an unconventional way is Langium provides support for Visual
Studio Code integration, and it solves the issue of parsing the definition of each proposal
manually. However with only the grammar we cannot actually verify the wildcards placed
in apl to code and transform to code are correctly written. This is done by using a
feature of Langium called Validator.

Langium Validator

A Langium validator allows for further checks on the templates written withing JSTQL
, a validator allows for the implementation of specific checks on specific parts of the
grammar.

JSTQL does not allow empty typed wildcard definitions in applicable to, this means
a wildcard cannot be untyped or allow any AST type to match against it. This is not
possible to verify with the grammar, as inside the grammar the code is simply defined
as a STRING terminal. This means further checks have to be implemented using code.
In order to do this we have a specific Validator implemented on the Pair definition of
the grammar. This means every time anything contained within a Pair is updated, the
language server shipped with Langium will perform the validation step and report any
errors.

The validator uses Pair as it’s entry point, as it allows for a checking of wildcards in
both applicable to and transform to, allowing for a check for if a wildcard identifier
used in transform to exists in the definition of applicable to.

1 export class JstqlValidator {
2 validateWildcardAplTo(pair: Pair , accept: ValidationAcceptor):

↪→ void {
3 try {
4 if (validationResultAplTo.errors.length != 0) {
5 accept("error",

↪→ validationResultAplTo.errors.join("\n"), {

21

6 node: pair.aplTo ,
7 property: "apl_to_code",
8 });
9 }
10 if (validationResultTraTo.length != 0) {
11 accept("error", validationResultTraTo.join("\n"), {
12 node: pair.traTo ,
13 property: "transform_to_code",
14 });
15 }
16 } catch (e) {}
17 }
18 }

4.3 Pre-parsing

In order to refer to internal DSL variables defined in applicable to in the transforma-
tion, we need to extract this information from the template definitions and pass that on
to

Pre-parsing JSTQL

In order to allow the use of [1, Babel], the wildcards present in the blocks of applicable
to and transform to have to be parsed and replaced with some valid JavaScript. This
is done by using a pre-parser that extracts the information from the wildcards and inserts
an Identifier in their place.

In order to pre-parse the text, we look at each and every character in the code section,
when a start token of a wildcard is discovered, which is denoted by <<, everything after
that until the closing token, which is denoted by >>, is then treated as an internal DSL
variable and will be stored by the tool. A variable flag is used, so when the value of
flag is false, we know we are currently not inside a wildcard block, this allows us to just
pass the character through to the variable cleanedJS. When flag is true, we know we
are currently inside a wildcard block and we collect every character of the wildcard block
into temp. Once we hit the end of the wildcard block, we pass temp on to the function
parseInternalString

1 export function parseInternal(code: string): InternalParseResult {
2 let cleanedJS = "";
3 let temp = "";
4 let flag = false;
5 let prelude: InternalDSLVariable = {};
6
7 for (let i = 0; i < code.length; i++) {
8 if (code[i] === "<" && code[i + 1] === "<") {
9 // From now in we are inside of the DSL custom block
10 flag = true;
11 i += 1;
12 continue;
13 }

22

14
15 if (flag && code[i] === ">" && code[i + 1] === ">") {
16 // We encountered a closing tag
17 flag = false;
18
19 let { identifier , types } = parseInternalString(temp);
20
21 cleanedJS += identifier;
22
23 prelude[identifier] = types;
24 i += 1;
25 temp = "";
26 continue;
27 }
28
29 if (flag) {
30 temp += code[i];
31 } else {
32 cleanedJS += code[i];
33 }
34 }
35 return { prelude , cleanedJS };
36 }

Each wildcard will follow the exact same format, they begin with the opening token <<,
followed by what name this variable will be referred by, this variable is called an internal
DSL variable and will be used when transferring the matching AST node/s from the users
code into the transform template. Following the internal DSL variable a : token is used
to show we are moving onto the next part of the wildcard. Following this token is a list
of DSL types, either 1 or many, that this wildcard can match against, separated by |.
This is a very strict notation on how wildcards can be written, this avoids collision with
the already reserved bit-shift operator in in JavaScript, as it is highly unlikely any code
using the bit-shift operator would fit into this format of a wildcard.

1 << Variable_Name : Type1 | Keyword | Type2 | Type3 >>

1 function parseInternalString(dslString: string) {
2 let [identifier , typeString] = dslString
3 .replace (/\s/g, "").split(":");
4
5 return {
6 identifier ,
7 types: typeString.length > 0 ? typeString.split("|") : [""],
8 };
9 }

Pre-parsing JSTQL-SH

The self-hosted version JSTQL-SH also requires some form of pre-parsing in order to
prepare the internal DSL environment. This is relatively minor and only parsing directly
with no insertion compared to JSTQL .

In order to use JavaScript as the meta language to define JavaScript we define a
Prelude. This prelude is required to consist of several Declaration Statements where

23

the variable names are used as the internal DSL variables and right side expressions are
used as the DSL types. In order to allow for multiple types to be allowed for a single
internal DSL variable we re-use JavaScripts list definition.

We use Babel to generate the AST of the prelude definition, this allows us to get a
JavaScript object structure. Since the structure is very strictly defined, we can expect
every stmt of stmts to be a variable declaration, otherwise throw an error for invalid
prelude. Continuing through the object we have to determine if the prelude definition sup-
ports multiple types, that is if it is either an ArrayDeclaration or just an Identifier.
If it is an array we initialize the prelude with the name field of the VariableDeclaration
to either an empty array and fill it with each element of the ArrayDeclaration or directly
insert the single Identifier.

1 for (let stmt of stmts) {
2 // Error if not variableDeclaration
3 if (stmt.type == "VariableDeclaration") {
4 // If defined multiple valid types
5 if (stmt.init == "ArrayExpression") {
6 prelude[stmt.name] = []; // Empty array on declared
7 for (let elem of stmt.init.elements) {
8 // Add each type of the array def
9 prelude[stmt.name].push(elem);
10 }
11 } else {
12 // Single valid type
13 prelude[stmt.name] = [stmt.init.name];
14 }
15 }
16 }

4.4 Using Babel to parse

Allowing the tool to perform transformations of code requires the generation of an Ab-
stract Syntax Tree from the users code, applicable to and transform to. This means
parsing JavaScript into an AST, in order to do this we use a tool [1, Babel].

The most important reason for choosing to use Babel for the purpose of generating the
AST’s used for transformation is due to the JavaScript community surrounding Babel.
As this tool is dealing with proposals before they are part of JavaScript, a parser that
supports early proposals for JavaScript is required. Babel supports most Stage 2 proposals
through its plugin system, which allows the parsing of code not yet part of the language.

Custom Tree Structure

To allow for matching and transformations to be applied to each of the sections inside a
pair definition, they have to be parsed into and AST in order to allow the tool to match
and transform accordingly. To do this the tool uses the library [1, Babel] to generate an

24

AST data structure. However, this structure does not suit traversing multiple trees at
the same time, this is a requirement for matching and transforming. Therefore we use
this Babel AST and transform it into a simple custom tree structure to allow for simple
traversal of the tree.

As can be seen in Figure 4.2 we use a recursive definition of a TreeNode where a
nodes parent either exists or is null (it is top of tree), and a node can have any number
of children elements. This definition allows for simple traversal both up and down the
tree. Which means traversing two trees at the same time can be done in the matcher and
transformer section of the tool.

1 export class TreeNode <T> {
2 public parent: TreeNode <T> | null;
3 public element: T;
4 public children: TreeNode <T>[] = [];
5
6 constructor(parent: TreeNode <T> | null , element: T) {
7 this.parent = parent;
8 this.element = element;
9 if (this.parent) this.parent.children.push(this);
10 }
11 }

Listing 4.2: Simple definition of a Tree structure in TypeScript

Placing the AST generated by Babel into this structure means utilizing the library
[3]Babel Traverse. Babel Traverse uses the [7]visitor pattern to allow for traversal of the
AST. While this method does not suit traversing multiple trees at the same time, it allows
for very simple traversal of the tree in order to place it into our simple tree structure.

[3]Babel Traverse uses the [7]visitor pattern to visit each node of the AST in a depth
first manner, the idea of this pattern is one implements a visitor for each of the nodes
in the AST and when a specific node is visited, that visitor is then used. In the case
of transferring the AST into our simple tree structure we simply have to use the same
visitor for all nodes, and place that node into the tree.

Visiting a node using the enter() function means we went from the parent to that
child node, and it should be added as a child node of the parent. The node is automatically
added to its parent list of children nodes from the constructor of TreeNode. Whenever
leaving a node the function exit() is called, this means we are moving back up into the
tree, and we have to update what node was the last in order to generate the correct tree
structure.

1 traverse(ast , {
2 enter(path: any) {
3 let node: TreeNode <t.Node > = new TreeNode <t.Node >(
4 last ,
5 path.node as t.Node
6);
7
8 if (last == null) {
9 first = node;
10 }
11 last = node;
12 },

25

13 exit(path: any) {
14 if (last && last?. element ?.type != "Program") {
15 last = last.parent;
16 }
17 },
18 });
19 if (first != null) {
20 return first;
21 }

4.5 Matching

Performing the match against the users code it the most important step, as if no matching
code is found the tool will do no transformations. Finding the matches will depend
entirely on how well the definition of the proposal is written, and how well the proposal
actually can be defined within the confines of JSTQL . In this chapter we will discuss how
matching individual AST nodes to each other, and how wildcard matching is performed.

Matching singular Expression

The method of writing the applicable to section using a singular expression is by far
the most versatile way of defining a proposal, this is simply because there will be a
much higher chance of discovering matches with a template that is as generic as possible.
Therefore only matching against a single expression ensures the matcher tries to perform
a match at every level of the AST.

Matching Statements

Using multiple statements in the template of applicable to will result in a much stricter
matcher, that will only try to perform an exact match using a sliding window of the
amount of statements at every BlockStatement, as that is the only placement Statements
can reside in JavaScript.

4.6 Transforming

4.7 Generating

To generate JavaScript from the transformed AST created by this tool, we use a
JavaScript library titled [2]babel/generator. This library is specifically designed for use
with Babel to generate JavaScript from a Babel AST.

26

Bibliography

[1] Babel · Babel, May 2024. [Online; accessed 10. May 2024].

[2] @babel/generator · Babel, May 2024. [Online; accessed 12. May 2024].

[3] @babel/traverse · Babel, May 2024. [Online; accessed 12. May 2024].

[4] Langium, April 2024. [Online; accessed 10. May 2024].

[5] proposal-discard-binding, April 2024. [Online; accessed 25. Apr. 2024].

[6] proposal-do-expressions, May 2024. [Online; accessed 2. May 2024].

[7] J. Palsberg and C.B. Jay. The essence of the visitor pattern. In Proceedings. The
Twenty-Second Annual International Computer Software and Applications Conference
(Compsac ’98) (Cat. No.98CB 36241), pages 9–15, 1998.

27

Appendix A

Generated code from Protocol buffers

1 System.out.println("Hello Mars");

Listing A.1: Source code of something

28

	Introduction
	Background
	Figures

	Background
	Proposals

	Collecting User Feedback for Syntactic Proposals
	The core idea
	Applying a proposal

	Applicable proposals
	Syntactic Proposals
	Simple example of a syntactic proposal
	[Discard Bindings]Proposal:DiscardBindings
	Pipeline Proposal
	Description of Pipeline proposal
	Do proposal
	Await to Promise

	Searching user code for applicable snippets
	JSTQL
	Matching
	JSTQL custom matching types
	Transforming
	Structure of JSTQL

	Using the JSTQL with an actual syntactic proposal
	Pipeline Proposal
	Do Proposal

	Implementation
	Architecture
	Parsing JSTQL using Langium
	Langium

	Pre-parsing
	Using Babel to parse
	Matching
	Transforming
	Generating

	Bibliography
	Generated code from Protocol buffers

