
University of Bergen
Department of Informatics

Making a template query language
for EcmaScript

Author: Rolf Martin Glomsrud
Supervisor: Mikhail Barash

May, 2024

Abstract

Lorem ipsum dolor sit amet, his veri singulis necessitatibus ad. Nec insolens periculis ex.
Te pro purto eros error, nec alia graeci placerat cu. Hinc volutpat similique no qui, ad
labitur mentitum democritum sea. Sale inimicus te eum.

No eros nemore impedit his, per at salutandi eloquentiam, ea semper euismod meliore
sea. Mutat scaevola cotidieque cu mel. Eum an convenire tractatos, ei duo nulla molestie,
quis hendrerit et vix. In aliquam intellegam philosophia sea. At quo bonorum adipisci.
Eros labitur deleniti ius in, sonet congue ius at, pro suas meis habeo no.

Acknowledgements

Est suavitate gubergren referrentur an, ex mea dolor eloquentiam, novum ludus suscipit
in nec. Ea mea essent prompta constituam, has ut novum prodesset vulputate. Ad
noster electram pri, nec sint accusamus dissentias at. Est ad laoreet fierent invidunt, ut
per assueverit conclusionemque. An electram efficiendi mea.

Your name

Saturday 25th May, 2024

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Figures . 1

2 Background 2
2.1 Proposals . 2

3 Collecting User Feedback for Syntactic Proposals 3
3.1 The core idea . 3

3.1.1 Applying a proposal . 4
3.2 Applicable proposals . 4

3.2.1 Syntactic Proposals . 5
3.2.2 Simple example of a syntactic proposal 5
3.2.3 Pipeline Proposal . 5
3.2.4 Do Expressions . 7
3.2.5 Await to Promise . 8

3.3 Searching user code for applicable snippets 9
3.3.1 Structure of JSTQL . 9
3.3.2 JSTQL . 10
3.3.3 Transforming . 11

3.4 Using the JSTQL with syntactic proposals 12
3.4.1 ”Pipeline” Proposal . 12
3.4.2 ”Do Expressions” Proposal . 13
3.4.3 Await to Promises evaluation proposal 14

3.5 JSTQL-SH . 15

4 Implementation 16
4.1 Architecture . 16
4.2 Parsing JSTQL using Langium . 16

4.2.1 Langium . 18
4.3 Pre-parsing . 20
4.4 Using Babel to parse . 24
4.5 Matching . 25
4.6 Transforming . 30

5 Evaluation 32
5.1 Real Life source code . 32

i

6 Related Work 35
6.1 Other JavaScript parsers . 38

7 Future Work 39

Bibliography 41

A Generated code from Protocol buffers 43

ii

List of Figures

4.1 Tool architecture . 17

5.1 Evaluation with Next.js source code . 34
5.2 Evaluation with Three.js source code . 34
5.3 Evaluation with React source code . 34
5.4 Evaluation with Bootstrap source code 34
5.5 Evaluation with Atom source code . 34

iii

List of Tables

iv

Listings

3.1 Example of imaginary proposal optional let to int for declaring nu-
merical literal variables . 5

3.2 JSTQL definition of a proposal . 10
3.3 Example of Pipeline Proposal definition in JSTQL 12
3.4 Definition of Do Proposal in JSTQL . 13
3.5 Definition of Await to Promise evaluation proposal in JSTQL 15
4.1 Definition of JSTQL in Langium . 18
4.2 Grammar of type expressions . 22
4.3 Simple definition of a Tree structure in TypeScript 24
A.1 TypesScript types of Type Expression AST 43

v

Chapter 1

Introduction

Intro goes here

1.1 Background

1.1.1 Figures

1

Chapter 2

Background

2.1 Proposals

A proposal for EcmaScript is a suggestion for a change to the language. These changes
come with a set of problems that if the proposal is included as a part of EcmaScript,
those problems should be solved by utilizing the additions contained within the proposal.

2

Chapter 3

Collecting User Feedback for
Syntactic Proposals

The goal for this project is to utilize users familiarity with their own code to gain early
and worthwhile user feedback on new syntactic proposals for ECMAScript.

3.1 The core idea

When a use of ECMAScript wants to suggest a change to the language, the idea of the
change has to be described in a Proposal. A proposal is a general way of describing a
change and its requirements, this is done by a language specification, motivation for the
idea, and general discussion around the proposed change. A proposal ideally also needs
backing from the community of users that use ECMAScript, this means the proposal has
to be presented to users some way. This is currently done by many channels, such as
polyfills, code examples, and as beta features of the main JavaScript engines, however,
this paper wishes to showcase proposals to users by using a different avenue.

Users of ECMAScript have a familiarity with code they themselves have written. This
means they have knowledge of how their own code works and why they might have written
it a certain way. This project aims to utilize this pre-existing knowledge to showcase new
proposals for ECMAScript. This way will allow users to focus on what the proposal
actually entails, instead of focusing on the examples written by the proposal authors.

Further in this chapter, we will be discussing the current version and future version
of ECMAScript. What we are referring to in this case is with set of problems a proposal
is trying to solve, if that proposal is allowed into ECMAScript as part of the language,
there will be a future way of solving said problems. The current way is the current status
quo when the proposal is not part of ECMAScript, and the future version is when the
proposal is part of ECMAScript and we are utilizing the new features of said proposal.

3

The program will allow the users to preview proposals way before they are part of the
language. This way the committee can get useful feedback from users of the language
earlier in the proposal process. Using the users familiarity will ideally allow for a more
efficient process developing ECMAScript.

3.1.1 Applying a proposal

The way this project will use the pre-existing knowledge a user has of their own code is
to use that code as base for showcasing a proposals features. Using the users own code as
base requires the following steps in order to automatically implement the examples that
showcase the proposal inside the context of the users own code.

The ide is to identify where the features and additions of a proposal could have
been used. This means identifying parts of the users program that use pre-existing
ECMAScript features that the proposal is interacting with and trying to solve. This will
then identify all the different places in the users program the proposal can be applied.
This step is called matching in the following chapters

Once we have matched all the parts of the program the proposal could be applied to,
the users code has to be transformed to use the proposal, this means changing the code
to use a possible future version of JavaScript. This step also includes keeping the context
and functionality of the users program the same, so variables and other context related
concepts have to be transferred over to the transformed code.

The output of the previous step is then a set of code pairs, where one a part of
the users original code, and the second is the transformed code. The transformed code
is then ideally a perfect replacement for the original user code if the proposal is part of
ECMAScript. These pairs are used as examples to present to the user, presented together
so the user can see their original code together with the transformed code. This allows
for a direct comparison and an easier time for the user to understand the proposal.

The steps outlined in this section require some way of defining matching and trans-
forming of code. This has to be done very precisely and accurately in order to avoid
examples that are wrong. Imprecise definition of the proposal might lead to transformed
code not being a direct replacement for the code it was based upon. For this we sug-
gest two different methods, a definition written in a custom DSL JSTQL and a definition
written in a self-hosted way only using ECMAScript as a language as definition language.
Read more about this in SECTION HERE.

3.2 Applicable proposals

A proposal for ECMAScript is a suggested change for the language, in the case of EC-
MAScript this comes in the form of an addition to the language, as ECMAScript does
not allow for breaking changes. There are many different kinds of proposals, this project
focuses exclusively on Syntactic Proposals.

4

3.2.1 Syntactic Proposals

A syntactic proposal, is a proposal that contains only changes to the syntax of a language.
This means, the proposal contains either no, or very limited change to functionality, and
no changes to semantics. This limits the scope of proposals this project is applicable to,
but it also focuses solely on some of the most challenging proposals where the users of
the language might have the strongest opinions.

3.2.2 Simple example of a syntactic proposal

Consider a imaginary proposal optional let to int for declaring numerical literal
variables. This proposal describes adding an optional keyword for declaring numerical
variables if the expression of the declaration is a numerical literal.

This proposal will look something like this:

1 // Original code
2 let x = 100;
3 let b = "Some String";
4 let c = 200;
5
6 // Code after application of proposal
7 int x = 100;
8 let b = "Some String";
9 let c = 200;

Listing 3.1: Example of imaginary proposal optional let to int for declaring
numerical literal variables

See that in 3.1 the change is optional, and is not applied to the declaration of c, but
it is applied to the declaration of x. Since the change is optional to use, and essentially is
just syntax sugar, this proposal does not make any changes to functionality or semantics,
and can therefore be categorized as a syntactic proposal.

3.2.3 Pipeline Proposal

The Pipeline proposal [17] is a syntactic proposal which focuses on solving problems
related to nesting of function calls and other expressions that take an expression as an
argument.

This proposal aims to solve two problems with performing consecutive operations on a
value. In ECMAScript there are two main styles of achieving this functionality currently:
nesting calls and chaining calls, each of them come with a differing set of challenges when
used.

Nesting calls is mainly an issue related to function calls with one or more arguments.
When doing many calls in sequence the result will be a deeply nested call expression.

5

Using nested calls has some specific challenges related to readability when used. The
order of calls go from right to left, which is opposite of the natural reading direction
a lot of the users of ECMAScript are used to day to day. This means it is difficult to
switch the reading direction when working out which call happens in which order. When
using functions with multiple arguments in the middle of the nested call, it is not intu-
itive to see what call its arguments belong to. These issues are the main challenges this
proposal is trying to solve. On the other hand, nested calls can be simplified by using
temporary variables. While this does introduce its own set of issues, it provides some
way of mitigating the readability problem. Another positive side of nested calls is they
do not require a specific design to be used, and a library developer does not have to de-

sign their library around this specific call style.
1 // Deeply nested call with

↪→ single arguments
2 f1(f2(f3(f4(v))));

1 // Deeply nested call with
↪→ multi argument functions

2 f1(v5 , f2(f3(v3 , f4(v1 , v2)),
↪→ v4), v6);

Chaining solves some of these issues: indeed, as it allows for a more natural reading
direction left to right when identifying the sequence of call, arguments are naturally
grouped together with their respective function call, and it provides a way of untangling
deep nesting. However, executing consecutive operations using chaining has its own set
of challenges when used. In order to use chaining, the API of the code being called has
to be designed to allow for chaining. This is not always the case however, making use
of chaining when it has not been specifically designed for can be very difficult. There
are also concepts in JavaScript not supported when using chaining, such as arithmetic
operations, literals, await expressions, yield expressions and so on. This proves to be
a significant downside of chaining, as it only allows for function calls when used, and if
one wants to allow for use of other concepts temporary variables have to be used.

1 // Chaining calls
2 function1 ().function2 ().function3 ();
3
4 // Chaining calls with multiple arguments
5 function1(value1).function2 ().function3(value2).function4 ();

The Pipeline proposal[17] aims to combine the benefits of these two styles without
the challenges each method faces.

The main benefit of the proposal is to allow for a similar style to chaining when
chaining has not been specifically designed to be applicable. The essential idea is to use
syntactic sugar to change the writing order of the calls without influencing the API of
the functions. Doing so will allow each call to come in the direction of left to right, while
still maintaining the modularity of deeply nested function calls.

The proposal introduces a pipe operator, which takes the result of an expression on
the left, and pipes it into an expression on the right. The location of where the result
is piped to is where the topic token is located. All the specifics of the exact token used

6

as a topic token and exactly what operator will be used as the pipe operator might be
subject to change, and is currently under discussion [6].

The code snippets below showcase the machinery of the proposal.

1 // Status quo
2 var loc =

↪→ Object.keys(grunt.config(
↪→ "uglify.all"))[0];

1 // With pipes
2 var loc =

↪→ grunt.config(’uglify.all’)
↪→ |> Object.keys (%) [0];

1 // Status quo
2 const json = await

↪→ npmFetch.json(
3 npa(pkgs [0]).escapedName ,

↪→ opts);

1 // With pipes
2 const json = pkgs [0] |>

↪→ npa (%).escapedName |>
↪→ await npmFetch.json(%,
↪→ opts);

1 // Status quo
2 return filter(obj ,

↪→ negate(cb(predicate)),
↪→ context);

1 // With pipes
2 return cb(predicate) |>

↪→ _.negate (%) |>
↪→ _.filter(obj , %, context);

1 // Status quo
2 return

↪→ xf[’@@transducer/result ’](obj[methodName](bind(xf[’@@transducer/step’],
↪→ xf), acc));

1 // With pipes
2 return xf
3 |>

↪→ bind (%[’@@transducer/step’],
↪→ %)

4 |> obj[methodName](%, acc)
5 |>

↪→ xf[’@@transducer/result ’](%);

The pipe operator is not a new concept, and is present in many other languages such
as F# [26] and Julia[13] where the pipe operator is | . The main difference between
the Julia and F# pipe operator compared to this proposal, is the result of the left side
expression has to be piped into a function with a single argument, the proposal suggests
a topic reference to be used in stead of requiring a function.

3.2.4 Do Expressions

The Do Expressions[16] proposal, is a proposal meant to bring a style of expression
oriented programming [23] to ECMAScript. Expression oriented programming is a concept
taken from functional programming which allows for combining expressions in a very free
manor allowing for a highly malleable programming experience.

The motivation of the ”Do expression” proposal is to allow for local scoping of a code
block that is treated as an expression. Thus, complex code requiring multiple statements
will be confined inside its own scope[8] and the resulting value is returned from the block
implicitly as an expression, similarly to how a unnamed functions or arrow functions
are currently used. In order to achieve this behavior in the current stable version of

7

ECMAScript, one needs to use unnamed functions and invoke them immediately, or use
an arrow function.

The codeblock of a do expression has one major difference from these equivalent
functions, as it allows for implicit return of the final statement of the block, and is the
resulting value of the entire do expression. The local scoping of this feature allows for a
cleaner environment in the parent scope of the do expression. What is meant by this is
for temporary variables and other assignments used once can be enclosed inside a limited
scope within the do block. Allowing for a cleaner environment inside the parent scope
where the do block is defined.

1 // Current status quo
2 let x = () => {
3 let tmp = f();
4 return tmp + tmp + 1;
5 };

1 // With do expression
2 let x = do {
3 let tmp = f();
4 tmp + tmp + 1;
5 };

1 // Current status quo
2 let x = function (){
3 let tmp = f();
4 let a = g() + tmp;
5 return a - 1;
6 }();

1 // With do expression
2 let x = do {
3 let tmp = f();
4 let a = g() + tmp;
5 a - 1;
6 };

3.2.5 Await to Promise

We discuss now an imaginary proposal that was used as a running example during the
development of this thesis. This proposal is of just a pure JavaScript transformation
example. The transformation this proposal is meant to display, is transforming a code
using await[9], into code which uses a promise[10].

To perform this transformation, we define an equivalent way of expressing an await

expression as a promise. The equivalent way of expressing await with a promise, is
removing await from the expression, this expression now will return a promise, which
has a function then(), this function is executed when the promise resolves. We pass
an arrow function as argument to then(), and append each following statement in the
current scope[8] inside the block of that arrow function. This will result in equivalent
behavior to using await.

1 // Code containing await
2 async function a(){
3 let b = 9000;
4 let something = await

↪→ asyncFunction ();
5 let c = something + 100;
6 return c + 1;
7 }

1 // Re -written using promises
2 async function a(){
3 let b = 9000;
4 return asyncFunction ()
5 .then((something) => {
6 let c = something + 100;
7 return c;
8 })
9 }

8

3.3 Searching user code for applicable snippets

In order to identify snippets of code in the user’s code where a proposal is applicable, we
need some way to define patterns of code to use as a query. To do this, we have designed
and implemented a domain-specific language that allows matching parts of code that is
applicable to some proposal, and transforming those parts to use the features of that
proposal.

3.3.1 Structure of JSTQL

Proposal Definition JSTQL is designed to mimic the examples already provided in
proposal descriptions [21]. These examples can be seen in each of the proposals described
in Section 3.2. The idea is to allow a similar kind of notation to the examples in order
to define the transformations.

The first part of JSTQL is defining the proposal, this is done by creating a named
block containing all definitions of templates used for matching alongside their respective
transformation. This section is used to contain everything relating to a specific proposal
and is meant for easy proposal identification by tooling.

1 proposal Pipeline_Proposal {}

Case Each proposal will have one or more definitions of a template for code to identify
in the users codebase, and its corresponding transformation definition. These are grouped
together in order to have a simple way of identifying the corresponding cases of matching
and transformations. This section of the proposal is defined by the keyword case and
a block that contains its related fields. A proposal definition in JSTQL should contain
at least one case definition. This allows for matching many different code snippets and
showcasing more of the proposal than a single concept the proposal has to offer.

1 case case_name {
2
3 }

Template used for matching In order to define the template used to match, we
have another section defined by the keyword applicable to. This section will contain the
template defined using JavaScript with specific DSL keywords defined inside the template.
This template is used to identify applicable parts of the user’s code to a proposal.

1 applicable to {
2 "let a = 0;"
3 }

9

Defining the transformation In order to define the transformation that is applied to
a specific matched code snippet, the keyword transform to is used. This section is similar
to the template section, however it uses the specific DSL identifiers defined in applicable
to, in order to transfer the context of the matched user code, this allows us to keep parts
of the users code important to the original context it was written in.

1 transform to{
2 "() => {
3 let b = 100;
4 }"
5 }

Full definition of JSTQL Taking all these parts of JSTQL structure, defining a
proposal in JSTQL will look as follows.

1 proposal PROPOSAL_NAME {
2 case CASE_NAME_1 {
3 applicable to {
4 "let b = 100;"
5 }
6 transform to {
7 "() => {};"
8 }
9 }
10 case CASE_NAME_2 {
11 applicable to {
12 "console.log();"
13 }
14 transform to {
15 "console.dir();"
16 }
17 }
18 }

Listing 3.2: JSTQL definition of a proposal

3.3.2 JSTQL

Showcasing a proposal using a user’s code requires some way of identifying applicable
code sections to that proposal. To do this, we have designed a DSL called JSTQL ,
JavaScript Template Query Language.

Identifying applicable code

In order to identify sections of code a proposal is applicable to, we use templates, which are
snippets of JavaScript. These templates are used to identify and match applicable sections
of a users code. A matching section for a template is one that produces an exactly equal
AST structure, where each node of the AST sections has the same information contained
within it. This means that templates are matched exactly against the users code, this

10

does not really provide some way of querying the code and performing context based
transformations, so for that we use wildcards within the template.

Wildcards are interspliced into the template inside a block denoted by << >>. Each
wildcard starts with an identifier, which is a way of referring to that wildcard in the
definition of the transformation template later. This allows for transferring the context
of parts matched to a wildcard into the transformed output, like identifiers, parts of
statements, or even entire statements, can be transferred from the original user code
into the transformation template. A wildcard also contains a type expression. A type
expression is a way of defining exactly the types of AST nodes a wildcard will produce
a match against. These type expressions use Boolean logic together with the AST node-
types from BabelJS[2] to create a very versatile of defining exactly what nodes a wildcard
can match against.

Wildcard type expressions

Wildcard expressions are used to match AST node types based on Boolean logic. This
means an expression can be as simple as VariableDeclaration: this will match only
against a node of type VariableDeclaration. Every type used in these expressions are
compared against the AST node types from Babel[2], meaning every AST node type
is supported. We also include the types Statement for matching against a statement,
and Expression for matching any expression. The expressions also support binary and
unary operators, an example Statement && !ReturnStatement will match any state-
ment which is not of type ReturnStatement. The expressions support the following
operators, && is logical AND, this means both parts of the expression have to evaluate to
true, ||means logical OR, so either side of expression can be true for the entire expression
to be true, ! is the only unary expression, and is logical NOT, so !Statement is any node
that is NOT a Statement. The wildcards support matching multiple sibling nodes, this is
done by using (expr)+, this is only valid at the top level of the expression. This is useful
for matching against a series of one or more Statements, while not wanting to match an
entire BlockStatement, this is written as (Statement && !ReturnStatement)+.

1 let variableName = << expr1: ((CallExpression || Identifier) &&
↪→ !ReturnStatement)+ >>;

A wildcard section is defined on the right hand side of an assignment statement. This
wildcard will match against any AST node classified as a CallExpression or an Identifier.

3.3.3 Transforming

When matching sections of the users code has been found, we need some way of defining
how to transform those sections to showcase a proposal. This is done in an transform

to block, this template describes the general structure of the newly transformed code.

11

A transformation template is used to define how the matches will be transformed after
applicable code has been found. The transformation is a general template of the code
once the match is replaced in the original AST. However, without transferring over the
context from the match, this would be a template search and replace. Thus, in order to
transfer the context from the match, wildcards are defined in this template as well. These
wildcards use the same block notation found in the applicable to template, however
they do not need to contain the types, as those are not needed in the transformation.
The only required field of the wildcard is the identifier defined in applicable to. This is
done in order to know which wildcard match we are taking the context from, and where
to place it in the transformation template.

Transforming a variable declaration from using let to use const.

1 // Example applicable to template
2 applicable to {
3 let <<variableName: Identifier >> = <<expr1: Expression >>;
4 }
5
6 // Example of transform to template
7 transform to {
8 const <<variableName >> = <<expr1 >>;
9 }

3.4 Using the JSTQL with syntactic proposals

This section contains the definitions of the proposals used to evaluate the tool created in
this thesis. These definitions do not have to cover every single case where the proposal
might be applicable, as they just have to be general enough to create some amount of
examples that will give a representative number of matches when the transformations are
applied to some relatively long user code.

3.4.1 ”Pipeline” Proposal

The Pipeline proposal is the first we define of the proposals presented in Section 3.2.
This is due to the proposal being applicable to function calls, which is used all across
JavaScript. This proposal is trying to solve readability when performing deeply nested
function calls.

1 proposal Pipeline {
2
3 case SingleArgument {
4 applicable to {
5 "<<someFunctionIdent:Identifier ||

↪→ MemberExpression >>(<< someFunctionParam:
↪→ Expression >>);"

6 }
7
8 transform to {
9 "<<someFunctionParam >> |> <<someFunctionIdent >>(%);"

12

10 }
11 }
12
13 case TwoArgument{
14 applicable to {
15 "<<someFunctionIdent: Identifier ||

↪→ MemberExpression >>(<< someFunctionParam:
↪→ Expression >>, <<moreFunctionParam: Expression >>)"

16 }
17 transform to {
18 "<<someFunctionParam >> |> <<someFunctionIdent >>(%,

↪→ <<moreFunctionParam >>)"
19 }
20 }
21 }

Listing 3.3: Example of Pipeline Proposal definition in JSTQL

In the Listing 3.3, the first pair definition SingleArgument will apply to any CallEx-
pression with a single argument. We do not expressively write a CallExpression inside
a wildcard, as we have defined the structure of a CallExpression. The first wildcard
someFunctionIdent, has the types of Identifier, to match against single identifiers,
and MemberExpression, to match against functions who are members of objects, i.e.
console.log. In the transformation template, we define the structure of a function
call using the pipe operator, but the wildcards change order, so the argument passed as
argument someFunctionParam is placed on the left side of the pipe operator, and the
CallExpression is on the right, with the topic token as the argument. This case will
produce a match against all function calls with a single argument, and transform them to
use the pipe operator. The main difference of the second case TwoArgument, is it matches
against functions with exactly two arguments, and uses the first argument as the left side
of the pipe operator, while the second argument remains in the function call.

3.4.2 ”Do Expressions” Proposal

The ”Do Expressions” proposal[16] can be specified in our tool. Due to the nature of
the proposal, it is not as applicable as the ”Pipeline” proposal, as it does not re-define
a style that is used quite as frequently as call expressions. This means the amount of
transformed code snippets this specification in JSTQL will be able to perform is expected
to be lower. This is due to the Do Proposal introducing an entirely new way to write
expression-oriented code in JavaScript. If the user running this tool has not used the
current way of writing in an expression-oriented style in JavaScript, JSTQL is limited in
the amount of transformations it can perform. Nevertheless, if the user has been using
an expression-oriented style, JSTQL will transform parts of the code.

1 proposal DoExpression {
2 case arrowFunction {
3 applicable to {
4 "() => {
5 <<statements: (Statement && !ReturnStatement)+>>
6 return <<returnVal : Expression >>;
7 }
8 "

13

9 }
10 transform to {
11 "(do {
12 <<statements >>
13 <<returnVal >>
14 })"
15 }
16 }
17
18 case immediatelyInvokedAnonymousFunction {
19 applicable to {
20 "(function (){
21 <<statements: (Statement && !ReturnStatement)+>>
22 return <<returnVal : Expression >>;
23 })();"
24 }
25
26 transform to {
27 "(do {
28 <<statements >>
29 <<returnVal >>
30 })"
31 }
32 }
33 }

Listing 3.4: Definition of Do Proposal in JSTQL

In Listing 3.4, the specification of ”Do Expression” proposal in JSTQL can be seen.
It has two cases: the first case arrowFunction, applies to a code snippet using an ar-
row function[11] with a return value. The wildcards of this template are statements,
which is a wildcard that matches against one or more statements that are not of type
ReturnStatement, the reason we limit the one or more match is we cannot match the
final statement of the block to this wildcard, as that has to be matched against the re-
turn statement in the template. The second wildcard returnVal matches against any
expressions. The reason for extracting the expression from the return statement, is to
use it in the implicit return of the do block. In the transformation template, we re-
place the arrow function with with a do expression, this do expression has to be defined
inside parenthesis, as a free floating do expression is not allowed due to ambiguous pars-
ing against a do while() statement. We and insert the statements matched against
statements wildcard into the block of the do expression, and the final statement of the
block is the expression matched against the returnVal wildcard. This will produce an
equivalent transformation of an arrow function into a do expression. The second case
immediatelyInvokedAnonymousFunction follows the same principle as the first case,
but is applied to immediately invoked anonymous functions, and produces the exact same
output after the transformation as the first case. This is because immediately invoked
anonymous functions are equivalent to arrow functions.

3.4.3 Await to Promises evaluation proposal

This section will cover the evaluation proposal we created in order to evaluate this tool
described in 3.2.

14

This proposal was created in order to evaluate the tool, as it is quite difficult to define
applicable code in this current template form. This definition is limited, and can only
apply if the function only contains a single await expression. This actually highlights
some of the issues with the current design of JSTQL that will be described in Future
Work.

1 proposal awaitToPomise{
2 case single{
3 applicable to {
4 "let <<ident:Identifier >> = await <<awaitedExpr:

↪→ Expression >>;
5 <<statements: (Statement && !ReturnStatement)*>>
6 return <<returnExpr: Expression >>
7 "
8 }
9
10 transform to{
11 "return <<awaitedExpr >>.then((<<ident >>) => {
12 <<statements >>
13 return <<returnExpr >>
14 });"
15 }
16 }
17 }

Listing 3.5: Definition of Await to Promise evaluation proposal in JSTQL

3.5 JSTQL-SH

In this thesis, we also created an alternative way of defining proposals and their respective
transformations, this is done using JavaScript as it’s own meta language for the defini-
tions. The reason for creating a way of defining proposals using JavaScript is, it allows
us to limit the amount of dependencies of the tool, since we no longer rely on JSTQL ,
and it allows for more exploration in the future work of this project.

JSTQL-SH is less of an actual language, and more of a program API at the moment,
it allows for defining proposals purely in JavaScript objects, which is meant to allow a
more modular way of using this idea. In JSTQL-SH you define a prelude, which is just
a list of variable declarations that contain the type expression as a string for that given
wildcard. This means we do not need to perform wildcard extraction when wanting to
parse the templates used for matching and transformation.

1 // Definition in JSTQL
2 proposal a{
3 case {
4 applicable to {
5 <<a:Expression >>
6 }
7 transform to {
8 () => <<a>>
9 }
10 }
11 }

1 // Equivalent definition in
↪→ JSTQL -SH

2 {
3 prelude: ’let a =

↪→ "Expression"’‘,
4 applicableTo: "a;",
5 transformTo: "() => a;"
6 }

15

Chapter 4

Implementation

In this chapter, the implementation of the tool utilizing the JSTQL and JSTQL-SH
will be presented. It will describe the overall architecture of the tool, the flow of data
throughout, and how the different stages of transforming user code are completed.

4.1 Architecture

The architecture of the work described in this thesis is illustrated in Figure 4.1

In this tool, there exists two multiple ways to define a proposal, and each provide the
same functionality, they only differ in syntax and writing-method. One can either write
the definition in JSTQL which utilizes Langium to parse the language, or one can use a
JSON definition, which is more friendly as an API or people more familiar with JSON
definitions.

4.2 Parsing JSTQL using Langium

In this section, the implementation of the parser for JSTQL will be described. This
section will outline the tool Langium, used as a parser-generator to create the AST used
by the tool later to perform the transformations.

16

17

JSTQL Code Self-Hosted JSON

Langium Parser Self-Hosted JSON parser

Prelude BuilderPre-parser

Babel

Custom AST builder

Matcher

Transformer

Generator

Figure 4.1: Overview of tool architecture

4.2.1 Langium

Langium [14] is primarily used to create parsers for Domain Specific Language, these
kinds of parsers output an Abstract Syntax Tree that is later used to create interpreters
or other tooling. In the case of JSTQL we use Langium to generate an AST definition in
the form of TypeScript Objects, these objects and their relation are used as definitions
for the tool to do matching and transformation of user code.

In order to generate this parser, Langium required a definition of a Grammar. A
grammar is a set of instructions that describe a valid program. In our case this is a
definition of describing a proposal, and its applicable to, transform to, descriptions. A
grammar in Langium starts by describing the Model. The model is the top entry of the
grammar, this is where the description of all valid top level statements.

In JSTQL the only valid top level statement is the definition of a proposal. This
means our language grammar model contains only one list, which is a list of 0 or many
Proposal definitions. A Proposal definition is denoted by a block, which is denoted by
{...} containing some valid definition. In the case of JSTQL this block contains 1 or
many definitions of Case.

Case is defined very similarly to Proposal, as it contains only a block containing a
definition of a Section

The Section is where a single case of some applicable code and its corresponding
transformation is defined. This definition contains specific keywords do describe each of
them, applicable to denotes a definition of some template JSTQL uses to perform the
matching algorithm. transform to contains the definition of code used to perform the
transformation.

In order to define exactly what characters/tokens are legal in a specific definition,
Langium uses terminals defined using Regular Expressions, these allow for a very specific
character-set to be legal in specific keys of the AST generated by the parser generated by
Langium. In the definition of Proposal and Pair the terminal ID is used, this terminal
is limited to allow for only words and can only begin with a character of the alphabet
or an underscore. In Section the terminal TEXT is used, this terminal is meant to allow
any valid JavaScript code and the custom DSL language described in 3.3.2. Both these
terminals defined allows Langium to determine exactly what characters are legal in each
location.

1 grammar Jstql
2
3 entry Model:
4 (proposals += Proposal)*;
5
6 Proposal:
7 ’proposal ’ name=ID "{"
8 (case+=Case)+
9 "}";
10
11 Case:
12 "case" name=ID "{"

18

13 aplTo=ApplicableTo
14 traTo=TraTo
15 "}";
16
17 ApplicableTo:
18 "applicable" "to" "{"
19 apl_to_code=STRING
20 "}";
21 TraTo:
22 "transform" "to" "{"
23 transform_to_code=STRING
24 "}";
25 hidden terminal WS: /\s+/;
26 terminal ID: /[_a-zA-Z][\w_]*/;
27 terminal STRING: /"[^"]*"|’[^’]*’/;

Listing 4.1: Definition of JSTQL in Langium

In the case of JSTQL , we are not actually implementing a programming language
meant to be executed. We are using Langium in order to generate an AST that will be
used as a markup language, similar to YAML, JSON or TOML. The main reason for
using Langium in such an unconventional way is Langium provides support for Visual
Studio Code integration, and it solves the issue of parsing the definition of each proposal
manually. However with only the grammar we cannot actually verify the wildcards placed
in apl to code and transform to code are correctly written. This is done by using a
feature of Langium called Validator.

Langium Validator

A Langium validator allows for further checks on the templates written withing JSTQL
, a validator allows for the implementation of specific checks on specific parts of the
grammar.

JSTQL does not allow empty typed wildcard definitions in applicable to, this means
a wildcard cannot be untyped or allow any AST type to match against it. This is not
possible to verify with the grammar, as inside the grammar the code is simply defined
as a STRING terminal. This means further checks have to be implemented using code.
In order to do this we have a specific Validator implemented on the Pair definition of
the grammar. This means every time anything contained within a Pair is updated, the
language server shipped with Langium will perform the validation step and report any
errors.

The validator uses Pair as it’s entry point, as it allows for a checking of wildcards in
both applicable to and transform to, allowing for a check for if a wildcard identifier
used in transform to exists in the definition of applicable to.

1 export class JstqlValidator {
2 validateWildcardAplTo(pair: Pair , accept: ValidationAcceptor):

↪→ void {
3 try {
4 if (validationResultAplTo.errors.length != 0) {

19

5 accept("error",
↪→ validationResultAplTo.errors.join("\n"), {

6 node: pair.aplTo ,
7 property: "apl_to_code",
8 });
9 }
10 if (validationResultTraTo.length != 0) {
11 accept("error", validationResultTraTo.join("\n"), {
12 node: pair.traTo ,
13 property: "transform_to_code",
14 });
15 }
16 } catch (e) {}
17 }
18 }

Using Langium as a parser

[14]Langium is designed to automatically generate a lot of tooling for the language spec-
ified using its grammar. However, in our case we have to parse the JSTQL definition
using Langium, and then extract the Abstract syntax tree generated in order to use the
information it contains.

To use the parser generated by Langium, we created a custom function parseDSLtoAST()
within our Langium project, this function takes a string as an input, the raw JSTQL code,
and outputs the pure AST using the format described in the grammar described in Figure
4.1. This function is exposed as a custom API for our tool to interface with. This also
means our tool is dependent on the implementation of the Langium parser to function
with JSTQL . The implementation of JSTQL-SH is entirely independent.

When interfacing with the Langium parser to get the Langium generated AST, the
exposed API function is imported into the tool, when this API is ran, the output is on the
form of the Langium Model, which follows the same form as the grammar. This is then
transformed into an internal object structure used by the tool, this structure is called
TransformRecipe, and is then passed in to perform the actual transformation.

4.3 Pre-parsing

In order to refer to internal DSL variables defined in applicable to in the transforma-
tion, we need to extract this information from the template definitions and pass that on
to the matcher.

20

Why not use Langium?

Langium has support for creating a generator for generating an artifact, this actually suits
the needs of JSTQL quite well and could be used to extract the wildcards from each pair

and create the TransformRecipe. This would, as a consequence, make JSTQL-SH not
be entirely independent, and the entire tool would rely on Langium. This is not preferred
as that would mean both ways of defining a proposal both are reliant of Langium and
not separated. The reason for using our own pre-parser is to allow for an independent
way to define transformations using our tool.

Extracting wildcards from JSTQL

In order to allow the use of [2, Babel], the wildcards present in the blocks of applicable
to and transform to have to be parsed and replaced with some valid JavaScript. This
is done by using a pre-parser that extracts the information from the wildcards and inserts
an Identifier in their place.

To pre-parse the text, we look at each and every character in the code section, when a
start token of a wildcard is discovered, which is denoted by <<, everything after that until
the closing token, which is denoted by >>, is then treated as an internal DSL variable
and will be stored by the tool. A variable flag is used, so when the value of flag is
false, we know we are currently not inside a wildcard block, this allows us to just pass
the character through to the variable cleanedJS. When flag is true, we know we are
currently inside a wildcard block and we collect every character of the wildcard block into
temp. Once we hit the end of the wildcard block, when we have consumed the entirety
of the wildcard, it is then passed to a tokenizer, then to a recursive descent parser.

Once the wildcard is parsed, and we know it is safely a valid wildcard, we insert an
identifier into the JavaScript template where the wildcard would reside. This allows for
easier identifications of wildcards when performing matching/transformation as we can
identify whether or not an Identifier in the code is the same as the identifier for a wildcard.
This however, does introduce the problem of collisions between the wildcard identifiers
inserted and identifiers present in the users code. In order to avoid this, the tool adds
at the beginning of every identifier inserted in place of a wildcard. This allows for easier
identification of if an Identifier is a wildcard, and avoids collisions where a variable in the
user code has the same name as a wildcard inserted into the template.

1 export function parseInternal(code: string): InternalParseResult {
2 for (char of code) {
3 if (char === "<" && nextChar === "<") {
4 // From now in we are inside of the DSL custom block
5 maybeInsideWildcard = true;
6 }
7
8 if (flag && code[i] === ">" && code[i + 1] === ">") {
9 // We encountered a closing tag
10 flag = false;
11

21

12 try{
13 let { identifier , types } = parseWildcard(temp);
14 // Add the new Identifier with collision avoiding

↪→ characters
15 cleanedJS += collisionAvoider(identifier);
16
17 prelude[identifier] = types;
18 continue;
19
20 }catch{
21 // Maybe encountered bitshift operator or other error
22 }
23
24 }
25 }
26 return { prelude , cleanedJS };
27 }

Parsing wildcard

Once a wildcard has been extracted from the pair definitions inside JSTQL , they have
to be parsed into a simple Tree to be used when matching against the wildcard. This is
accomplished by using a simple tokenizer and a [24]Recursive Descent Parser.

Our tokenizer simply takes the raw stream of input characters extracted from the
wildcard block within the template, and determines which part is what token. Due to
the very simple nature of the type expressions, no ambiguity is present with the tokens,
so determining what token is meant to come at what time is quite trivial. We simply use
a switch case on the current token, if the token is of length 1 we simply accept it and
move on to the next character. If the next character is an unexpected one it will produce
an error. The tokenizer also groups tokens with a token type, this allows for an easier
time parsing the tokens later.

A recursive descent parser is created to closely mimic the grammar of the language
the parser is implemented for, where we define functions for handling each of the non-
terminals and ways to determine what non terminal each of the token-types result in. In
the case of this parser, the language is a very simple boolean expression language.

1 Wildcard:
2 Identifier ":" MultipleMatch
3
4 MultipleMatch:
5 GroupExpr "*"
6 | TypeExpr
7
8 TypeExpr:
9 BinaryExpr
10 | UnaryExpr
11 | PrimitiveExpr
12
13 BinaryExpr:
14 TypeExpr { Operator TypeExpr }*
15
16 UnaryExpr:
17 {UnaryOperator }? TypeExpr
18

22

19 PrimitiveExpr:
20 GroupExpr | Identifier
21
22 GroupExpr:
23 "(" TypeExpr ")"

Listing 4.2: Grammar of type expressions

The grammar of the type expressions used by the wildcards can be seen in Figure 4.2,
the grammar is written in something similar to Extended Backus-Naur form, where we
define the terminals and non-terminals in a way that makes the entire grammar solvable
by the Recursive Descent parser.

Our recursive descent parser produces a very simple [27, 28]AST which is later used
to determine when a wildcard can be matched against a specific AST node, the full
definiton of this AST can be seen in A.1. We use this AST by traversing it using a
[31]visitor pattern and comparing each Identifier against the specific AST node we are
currently checking, and evaluating all subsequent expressions and producing a boolean
value, if this value is true, the node is matched against the wildcard, if not then we do
not have a match.

Pre-parsing JSTQL-SH

The self-hosted version JSTQL-SH also requires some form of pre-parsing in order to
prepare the internal DSL environment. This is relatively minor and only parsing directly
with no insertion compared to JSTQL .

In order to use JavaScript as the meta language to define JavaScript we define a
Prelude. This prelude is required to consist of several Declaration Statements where
the variable names are used as the internal DSL variables and right side expressions
are strings that contain the type expression used to determine a match for that specific
wildcard.

We use Babel to generate the AST of the prelude definition, this allows us to get a
JavaScript object structure. Since the structure is very strictly defined, we can expect
every stmt of stmts to be a variable declaration, otherwise throw an error for invalid
prelude. Then the string value of each of the variable declarations is passed to the same
parser used for JSTQL wildcards.

The reason this is preferred is it allows us to avoid having to extract the wildcards
and inserting an Identifier.

23

4.4 Using Babel to parse

Allowing the tool to perform transformations of code requires the generation of an Ab-
stract Syntax Tree from the users code, applicable to and transform to. This means
parsing JavaScript into an AST, in order to do this we use a tool [2, Babel].

The most important reason for choosing to use Babel for the purpose of generating the
AST’s used for transformation is due to the JavaScript community surrounding Babel.
As this tool is dealing with proposals before they are part of JavaScript, a parser that
supports early proposals for JavaScript is required. Babel supports most Stage 2 proposals
through its plugin system, which allows the parsing of code not yet part of the language.

Custom Tree Structure

To allow for matching and transformations to be applied to each of the sections inside a
pair definition, they have to be parsed into and AST in order to allow the tool to match
and transform accordingly. To do this the tool uses the library [2, Babel] to generate an
AST data structure. However, this structure does not suit traversing multiple trees at
the same time, this is a requirement for matching and transforming. Therefore we use
this Babel AST and transform it into a simple custom tree structure to allow for simple
traversal of the tree.

As can be seen in Figure 4.3 we use a recursive definition of a TreeNode where a
nodes parent either exists or is null (it is top of tree), and a node can have any number
of children elements. This definition allows for simple traversal both up and down the
tree. Which means traversing two trees at the same time can be done in the matcher and
transformer section of the tool.

1 export class TreeNode <T> {
2 public parent: TreeNode <T> | null;
3 public element: T;
4 public children: TreeNode <T>[] = [];
5
6 constructor(parent: TreeNode <T> | null , element: T) {
7 this.parent = parent;
8 this.element = element;
9 if (this.parent) this.parent.children.push(this);
10 }
11 }

Listing 4.3: Simple definition of a Tree structure in TypeScript

Placing the AST generated by Babel into this structure means utilizing the library
[5]Babel Traverse. Babel Traverse uses the [31]visitor pattern to allow for traversal of
the AST. While this method does not suit traversing multiple trees at the same time,
it allows for very simple traversal of the tree in order to place it into our simple tree
structure.

24

[5]Babel Traverse uses the [31]visitor pattern to visit each node of the AST in a depth
first manner, the idea of this pattern is one implements a visitor for each of the nodes
in the AST and when a specific node is visited, that visitor is then used. In the case
of transferring the AST into our simple tree structure we simply have to use the same
visitor for all nodes, and place that node into the tree.

Visiting a node using the enter() function means we went from the parent to that
child node, and it should be added as a child node of the parent. The node is automatically
added to its parent list of children nodes from the constructor of TreeNode. Whenever
leaving a node the function exit() is called, this means we are moving back up into the
tree, and we have to update what node was the last in order to generate the correct tree
structure.

1 traverse(ast , {
2 enter(path: any) {
3 let node: TreeNode <t.Node > = new TreeNode <t.Node >(
4 last ,
5 path.node as t.Node
6);
7
8 if (last == null) {
9 first = node;
10 }
11 last = node;
12 },
13 exit(path: any) {
14 if (last && last?. element ?.type != "Program") {
15 last = last.parent;
16 }
17 },
18 });
19 if (first != null) {
20 return first;
21 }

4.5 Matching

Performing the match against the users code it the most important step, as if no matching
code is found the tool will do no transformations. Finding the matches will depend
entirely on how well the definition of the proposal is written, and how well the proposal
actually can be defined within the confines of JSTQL . In this chapter we will discuss
how matching is performed based on the definition of applicable to

Determining if AST nodes match

The initial problem we have to overcome is a way of comparing AST nodes from the tem-
plate to AST nodes from the user code. This step also has to take into account comparing
against wildcards and pass that information back to the AST matching algorithms.

25

In the pre-parsing step of JSTQL we are replacing each of the wildcards with an
expression of type Identifier, this means we are inserting an Identifier at either a location
where an expression resides, or a statement. In the case of the identifier being placed
where a statement should reside, it will be wrapped in an ExpressionStatement. This has
to be taken into account when comparing statement nodes from the template and user
code, as if we encounter an ExpressionStatement, its corresponding expression has to be
checked for if it is an Identifier.

Since a wildcard is replaced by an Identifier, when matching a node in the template,
we have to check if it is the Identifier or ExpressionStatement with an identifier contained
within, if there is an identifier, we have to check if that identifier is a registered wildcard.
If an Identifier shares a name with a wildcard, we have to compare the node against
the Type expression of that wildcard. When we do this, we traverse the entirety of the
wildcard expression AST and compare each of the leaves against the type of the current
code node. These resulting values are then passed through the type expression and the
resulting value is whether or not that code node can be matched against the wildcard.
We differentiate between if a node matched against a wildcard with the + notation, as
if that is the case we have to keep using that wildcard until it returns false in the tree
exploration algorithms.

When we are either matching against an Identifier that is not a registered wildcard,
or any other AST node in the template, we have to perform an equality check, in the
case of this template language, we can get away with just performing some preliminary
checks, such as that names of Identifiers are the same. Otherwise it is sufficient to just
perform an equality check of the types of the nodes we are currently trying to match. If
the types are the same, they can be validly matched against each other. This is sufficient
because we are currently trying to determine if a single node can be a match, and not
the entire template structure is a match. Therefore false positives that are not equivalent
are highly unlikely due to the fact the entire structure has to be a false positive match.

The function used for matching singular nodes will give different return values based
on how they were matched. The results NoMatch and Matched are self explanatory,
they are used when either no match is found, or if the nodes types match and the
template node is not a wildcard. When we are matching against a wildcard, if it is
a simple wildcard that cannot match against multiple nodes of the code, the result will
be MatchedWithWildcard. If the wildcard used to match is a one or many wildcard,
the result will be MatchedWithPlussedWildcard, as this shows the recursive traversal
algorithm used that this node of the template have to be tried against the code nodes
sibling.

1 enum MatchResult {
2 MatchedWithWildcard ,
3 MatchedWithPlussedWildcard ,
4 Matched ,
5 NoMatch ,
6 }

26

Matching a singular Expression/Statement template

The method of writing the applicable to section using a singular simple expression/s-
tatement is by far the most versatile way of defining matching template, this is because
there will be a higher probability of discovering applicable code with a template that is as
generic and simple as possible. A very complex matching template with many statements
or an expression containing many AST nodes will result in a lower chance of finding a
resulting match in the users code. Therefore using simple, single root node matching
templates provide the highest possibility of discovering a match within the users code.

Determining if we are currently trying to match with a template that is only a single
expression/statement, we have to verify that the program body of the template has the
length of 1, if it does we can use the singular expression matcher, if not, we have to rely
on the matcher that can handle multiple statements at the head of the tree.

When matching an expression the first statement in the program body of the AST
generated when using [3]babel generate will be of type ExpressionStatement, the reason
for this is Babel will treat free floating expressions as a statement, and place them into
an ExpressionStatement. This will miss many applicable sections in the case of trying
to match against a users code because expressions within other statements are not inside
an ExpressionStatement. This will give a template that is incompatible with a lot of
otherwise applicable expressions. This means the statement ExpressionStatement has to
be removed, and the search has to be done with the expression as the top node of the
template.

In the case of the singular node in the body of the template program being a State-
ment, no removal has to be done, as a Statement can be used directly.

Recursively discovering matches The matcher used against single Expression/S-
tatement templates is based upon a Depth-First Search in order to perform matching,
and searches for matches from the top of the code definition. It is important we try to
match against the template at all levels of the code AST, this is done by starting a new
search one every child node of the code AST if the current node of the template tree is
the top node of the template. This ensures we have tried to perform a match at any level
of the tree, this also means we do not get any partial matches, as we only store matches
that are returned at the recursive call when we do the search from the first node of the
template tree. This is all done before ever checking the node we are currently on. The
reason for this is to avoid missing matches that reside further down in the current branch,
and also ensure matches further down are placed earlier in the full match array, which
makes it easier to perform transformation when partial collisions exist.

Once we have started a search on all the child nodes of the current one using the full
definition of applicable to, we can verify if we are currently exploring a match. This
means the current node is checked against the current top node of applicable to, if
said node is a match, based on what kind of match it is several different parts of the

27

algorithm are called. This is because there are different forms of matches depending on
if it is a match against a wildcard, a wildcard with +, or simply a node type match.

If the current node matches against a wildcard that does not use the + operator, we
simply pair the current template node to the matched node from the users code and
return. This is because whatever the current user node contains, it is being matched
against a wildcard and that means no matter what is below it, it is meant to be placed
directly into the transformation. Therefore we can determine that this is a match that is
valid.

When the current node is matched against a wildcard that does use the + opera-
tor, we have to continue trying to match against that same wildcard with the sibling
nodes of the current code node. This is performed in the recursive iteration above the
current one, and therefore we also return the paired AST nodes of the template and
the code, but we give the match result MatchResult.MatchedWithPlussedWildcard

to the caller function. When the caller function gets this result, it will continue try-
ing to match against the wildcard until it receives a different match result other than
MatchResult.MatchedWithPlussedWildcard.

When the current node is matched based on the types of the current AST nodes,
some parts have to hold. Namely, all child nodes of the template and the user code have
to also return some form of match, this means if any of the child nodes currently return
MatchResult.NoMatch the entire match is discarded. The number of child nodes of the
current match also has to be equal. Due to wildcards this means we have to be able
to match all child nodes of the user code to either a single node of the template, or a
wildcard using the + operator.

If the current node does not match, we simply discard the current search, as we have
already started a search from the start of the template at all levels of the user code AST,
we can safely end the search and rely on these to find matches further down in the tree.

To allow for easier transformation, and storage of what exact part of applicable to

was matched against the exact node of the code AST, we use a custom instance of the
simple tree structure described in 4.4, we use an interface PairedNode, this allows us
to hold what exact nodes were matched together, this allows for a simpler transforming
algorithm. The exact definition of PairedNode can be seen below. The reason the
codeNode is a list, is due to wildcards allowing for multiple AST nodes to match against,
as they might match multiple nodes of the user code against a single node of the template.

1 interface PairedNode{
2 codeNode: t.Node[],
3 aplToNode: t.Node
4 }

28

Matching multiple Statements

Using multiple statements in the template of applicable to will result in a much stricter
matcher, that will only try to perform an exact match using a [25]sliding window of the
amount of statements at every BlockStatement, as that is the only placement Statements
can reside in JavaScript[12].

The initial step of this algorithm is to search through the AST for ast nodes that
contain a list of Statements, this can be done by searching for the AST nodes Program
and BlockStatement, as these are the only valid places for a list of Statements to reside
[12]. Searching the tree is quite simple, as all that is required is checking the type of
every node recursively, and once a node that can contain multiple Statements, we check
it for matches.

Once a list of Statements has been discovered, the function matchMultiHead can be
executed with that block and the Statements of applicable to. This function will use
the technique [25]sliding window to match multiple statements in order the same length as
the list of statements are in applicable to. This sliding window will try to match every
Statement against its corresponding Statement in the current BlockStatement. When
matching a singular Statements in the sliding window, a simple DFS recursion algorithm
is applied, similar to algorithm used for matching a single expression/statement template,
however the difference is that we do not search the entire AST tree, and if it matches it
has to match fully and immediately. If a match is not found, the current iteration of the
sliding window is discarded and we move on to the next iteration by moving the window
one further.

One important case here is we might not know the width of the sliding window, this
is due to wildcards using the +, as they can match one or more nodes against each other.
These wildcards might match against (Statement)+. Therefore, we have to use a two
point technique when iterating through the statements of the users code. As we might
have to use the same statement from the template multiple times.

Output of the matcher

The resulting output of the matcher after finding all available matches, is a two dimen-
sional array of each match, where for every match there is a list of statements in AST
form, where paired ASTs from applicable to and the users code can be found. This
means that for every match, we might be transforming and replacing multiple statements
in the transformation function.

1 export interface Match {
2 // Every matching Statement in order with each pair
3 statements: TreeNode <PairedNodes >[];
4 }

29

4.6 Transforming

To perform the transformation and replacement on each of the matches, we take the
resulting list of matches, the template from the transform to section of the current
case of the proposal, and the AST version of original code parsed by Babel. All the
transformations are then applied to the code and we use [3]Babel generate to generate
JavaScript code from the transformed AST.

An important discovery is to ensure we transform the leaves of the AST first, this is
because if the transformation was applied from top to bottom, it might remove transfor-
mations done using a previous match. This means if we transform from top to bottom
on the tree, we might end up with a(b) |> c(%) in stead of b |> a(%) |> c(%) in the
case of the pipeline proposal. This is quite easily solved in our case, as the matcher looks
for matches from the top of the tree to the bottom of the tree, the matches it discovers
are always in that order. Therefore when transforming, all that has to be done is reverse
the list of matches, to get the ones closest to the leaves of the tree first.

Preparing the transform to template

The transformations are performed by inserting the matched wildcards from the appli-
cable to template into their respective locations in the transform to template. Then the
entire transform to template is placed into the original code AST where the match was
discovered. Doing this we are essentially doing a transformation that is a find and replace
with context passed through the wildcards.

In order to perform the transformation, all the sections matched against a wildcard
have to be transferred into the transform to template. We utilize the functionality from
Babel here and traverse the generated AST of the transform to template using [5]Babel
traverse, as this gives ut utility functions to replace, replace with many, and remove
nodes of the AST. We use custom visitors for Identifier and ExpressionStatement with
an Identifier as expression, in order to determine where the wildcard matches have to be
placed, as they have to placed at the same location that shares a name with the wildcard.
Once a shared identifier between the transform to template and the applicable to

template is discovered, a babel traverse replace with multiple is performed and the node/s
found in the match is inserted in place of the wildcard.

Inserting the template into the AST

Having a transformed version of the users code, it has to be inserted into the full AST
definition of the users code, again we use [5]babel/traverse to traverse the entirety of the
code AST using a visitor. This visitor does not apply to any node-type, as the matched
section can be any type. Therefore we use a generic visitor, and use an equality check to

30

find the exact part of the code this specific match comes from. Once we find where in
the users code the match came from, we replace it with the transformed transform to

nodes. This might be multiple Statements, therefore the function replaceWithMultiple

is used, to insert every Statement from the transform to body, and we are careful to
remove any following sibling nodes that were part of the original match. This is done by
removing the n-1 next siblings from where we inserted the transform to template.

To generate JavaScript from the transformed AST created by this tool, we use a
JavaScript library titled [3]babel/generator. This library is specifically designed for use
with Babel to generate JavaScript from a Babel AST. The transformed AST definition of
the users code is transformed, while being careful to apply all Babel plugins the current
proposal might require.

31

Chapter 5

Evaluation

In this chapter we will discuss how we evaluated JSTQL and its related tools. This
chapter will include some testing of the tool on demo code snippets, as well as running
each of the proposals discussed in this thesis on some large scale JavaScript projects.

Testing on code

In this section, we will showcase some synthetic transformations applied to code made to
fit each of the definitions discussed in this thesis.

The pipeline proposal is meant to merge the readability of chaining with the practi-
cality of deeply nested calls. This deep nesting can be seen in the input code Listing 5.
The resulting code can be seen in Listing 5.

1 // Original JavaScript
2 a(a(a(a(a(a(a(b)))))));
3 c(c(c(c(c(d, b), b), b), b), b);

1 // Transformed
2 b |> a(%) |> a(%) |> a(%) |> a(%) |> a(%) |> a(%) |> a(%);
3 d |> c(%, b) |> c(%, b) |> c(%, b) |> c(%, b) |> c(%, b);

5.1 Real Life source code

In order to perform actual large scale trial of this program, we have collected some github
projects containing many or large JavaScript files. Every JS file within the project is then
passed through the entire tool, and we will evaluate it based upon the amount of matches
discovered, as well as manual checking that the transformation resulted in correct code
on the matches.

32

Each case study was evaluated by running this tool on every .js file in the repository,
then collecting the number of matches found in total and how many files were successfully
searched. Evaluating if the transformation was correct is done by manually sampling
output files, and verifying that it passes through Babel Generate [3] without error. You
can see some highlighted transformations in Listing INSERT FIGURE HERE.

”Pipeline”[17] is clearly very applicable to most files, as it is really only looking for
function calls. This is by far the best result, and it found matches in almost all files that
Babel [4] managed to parse.

The Do proposal [16] is expected to not find many matches, as code that has not been
written in expression-oriented programming style will not produce many matches.

Await to promise also has an expected number of matches, but this evaluation proposal
is not meant to be real life representative. As it is limited to functions containing only a
single await statement and that statement has to be a VariableDeclaration.

When the amount of files searched is different for each of the proposals, it means
either a transformation on that file, or generation of that file failed for some reason. This
is probably due to bugs in the transform algorithm that creates this discrepancy.

Next.js [15] is one of the largest projects related to JavaScript. It is owned by Vercel
and is used as a development platform for the web.

Three.js [22] is a library for 3D rendering in JavaScript. It is written purely in
JavaScript and uses GPU for 3D calculations. It being a popular JavaScript library,
and being written in mostly pure JavaScript makes it a good case study for our tool. It
currently sits at over 1 million downloads weekly.

React [18] is a graphical user interface library for JavaScript, it facilitates the creation
of user interfaces for both web and native platforms. React is based upon splitting a user
interface into components for simple development. It is currently one of the most popular
libraries for creating web apps and has over 223000 stars on Github.

Bootstrap [7] is a front-end framework used for creating responsive and mobile-first
websites, it comes with a variety of built-in components, as well as a built in styling.
This styling is also customizable using CSS. This library is a good evaluation point for
this thesis as it is written in pure JavaScript and is used by millions of developers.

Atom [1] is a text editor made in JavaScript using the Electron framework. It was
created to give a very minimal and modular text editor. It was bought by Microsoft, and
later discontinued in favor for Visual Studio Code.

33

34

Proposal Matches found Files with matches Files searched Time

Pipeline 55787 1327 2331 89m 11s
Do 131 74 2331 35s

Await to Promise 43 38 2331 16s

Figure 5.1: Evaluation with Next.js source code

Proposal Matches found Files with matches Files searched Time

Pipeline 85050 1119 1262 242m 58s
Do 278 55 1385 3m 3s

Await to Promise 125 80 1262 59s

Figure 5.2: Evaluation with Three.js source code

Proposal Matches found Files with matches Files searched Time

Pipeline 16353 1266 2051 84s
Do 79 60 2051 8s

Await to Promise 104 88 2051 6s

Figure 5.3: Evaluation with React source code

Proposal Matches found Files with matches Files searched Time

Pipeline 13794 109 115 2m 57s
Do 13 8 115 3s

Await to Promise 0 0 115 2s

Figure 5.4: Evaluation with Bootstrap source code

Proposal Matches found Files with matches Files searched Time

Pipeline 40606 361 401 16m 17s
Do 46 26 401 6s

Await to Promise 8 6 401 4s

Figure 5.5: Evaluation with Atom source code

Chapter 6

Related Work

In this chapter, we present work related to other query languages for source code, aspect
oriented programming, some code searching methods, and other JavaScript parsers. This
all relates to the work described in this thesis.

Aspect Oriented Programming

Aspect oriented programming, is a programming paradigm that allows for increased mod-
ularity by allowing for a high degree of separation of concerns, specifically focusing on
cross-cutting concerns. Cross-cutting concerns are concerns that are present across classes
and across separations within the program.

In AOP one creates an Aspect, which is a module that contains some cross-cutting
concern the developer wants to achieve, this can be logging, error handling or other
concerns not related to the original classes it should applied to. An aspect contains
Advice,which is the specific code executed when certain conditions of the program are
met, an example of these are before advice, which is executed before a method executes,
after advice, which is executed after a method regardless of the methods outcome, and
around advice, which surrounds a method execution. Contained within the aspect is
also a Pointcut, which is the set of criteria determining when the aspect is meant to be
executed. This can be at specific methods, or when specific constructors are called etc.

Aspect oriented programming is similar to this project in that to define where Point-
cuts are placed, we have to define some structure and the AOP library has to search
the code execution for events triggering the pointcut and run the advice defined within
the aspect of that given pointcut. Essentially it performs a re-write of the code during
execution to add functionality to multiple places in the executing code.

35

Other source code query languages

In order to allow for simple analysis and refactoring of code, there already exists query
languages for querying code. These languages use several methods to allow for querying
code based on specific paradigms such as Logical queries, Declarative queries, or SQL
like queries. All provide similar functionality of being able to query code. In this section
we will look some of these languages for querying source code, and how they relate to
JSTQL developed in this thesis.

Browse-By-Query

Browse-By-Query is a language created for Java that analyses Java Bytecode files, and
builds a database structure to represent the code classes, method calls, and other sections
contained within the code. The language uses english-like queries combined with filtering
and set operators to allow for more complex queries. This language was created as a
way to browse large code-bases like one is browsing a database. Since BBQ builds the
source code into something resembling a database, queries can be done with respect to
each objects relationship in the original code, and complex and advanced queries based
on relationships are possible using this method.

.QL

.QL is an object-oriented query language. It supports querying a wide array of data
structures, code being one of them. [32].QL has a commercial implementation Semmle-
Code, which comes with a full editor and various pre-defined code transformations that
might be useful for the end developer.

PMD XPath

PMD is the most versatile query language for Java source code querying out of all the
ones explored in this section. [32]PMD supports querying of all Java constructs , it has
this wide support due to constructing the entire codebase in XML format. This language
was build for static code analysis, and therefore is a great way to perform queries on
static code, it is mostly used as a tool for code editors to enforce programming styles.

36

Jackpot

[29]Jackpot is a query language created for the [30]Apache Netbeans platform, it has
since been mostly renamed to Java Declarative Hints Language, we will continue to refer
to it as Jackpot in this section. The language uses declarative patterns to define source
code queries, these queries are used in conjunction with multiple rewrite definitions. This
is used in the Apache Netbeans suite of tools to allow for declarative refactoring of code.

This is quite similar to the form of JSTQL , as both language define som query by
using similar structure, in Jackpot you define a pattern, then every match of that pattern
can be re-written to a fix-pattern, each fix-pattern can have a condition attached to it.
This is quite similar to the applicable to and transform to sections of JSTQL . Jackpot
also supports something similar to the wildcards in JSTQL , as you can define variables in
the pattern definition and transfer them over to the fix-pattern definition. This is closely
related to the definition of wildcards in JSTQL , though without type restrictions and
notation for matching more than one AST node.

JetBrains structural search

JetBrains integrated development environments have a feature that allows for [20] struc-
tural search and replace. This feature is intended for large code bases where a developer
wants to perform a search and replace based on syntax and semantics, not just a regular
text based search and replace. A search is applied to specific files of the codebase or the
entire codebase. It does not recursively check the entire static structure of the code, but
this can be specified in the user interface of structural search and replace.

When doing structural search in Jetbrains IntelliJ IDEA, templates are used to
describe the query used in the search. These templates use variables described with
$variable$, these allow for transferring context to the structural replace.

This tool is an interactive exprience, where each match is showcased in the find tool,
and the developer can decide which matches to apply the replace template to. This allows
for error avoidance and a stricter search that is verified by humans. If the developer wants,
they do not have to verify each match and just replace everything.

When comparing this tool to JSTQL and its corresponding program, there are some
similarities. They are both template based, which means a search uses a template to
define query, both templates contain variables/wildcards in order to match against a free
section, and the replacing structure is also a template based upon those same variables.
A way of matching the variables/wildcards of structural search and replace also exists,
one can define the amount of X node to match against, similar to the + operator used
in JSTQL . A core difference between JSTQL and structural search and replace is the
variable type system. When performing a match and transformation in JSTQL the types
are used extensively to limit the match against the wildcards, while this limitation is not
possible in structural search and replace.

37

6.1 Other JavaScript parsers

Speedy Web Compiler

[19]Speedy Web Compiler is a library created for parsing JavaScript and other dialects
like JSX, TypeScript faster. It is written in Rust and advertises faster speeds than Babel
and is used by large organizations creating applications and tooling for the web platform.

Similar to [2]Babel, Speedy Web Compiler is an extensible parser that allows for
changing the specification of the parsed program. Its extensions are written in Rust.
While it does not have as mature of a plugin system as Babel, its focus on speed makes
it widely used for large scale web projects.

Speedy Web Compiler supports features out of the box such as Compilation, used
for TypeScript and other languages that are compiled down to JavaScript. Bundling,
which takes multiple JavaScript/TypeScript files and bundles them into a single out-
put file, while handling naming collisions. Minification, to make the bundle size of a
project smaller, transforming for use with WebAssembly, and custom plugins to change
the specification of the languages parsed by SWC.

Compared to Babel used in this paper, SWC focuses on speed, as its main selling
point is a faster way of developing web projects.

Acorn

Acorn is another parser written in JavaScript to parser JavaScript and it’s related lan-
guages. Acorn focuses on plugin support in order to support extending and redefinition
on how it’s internal parser works. It has a very similar syntax to and has it’s own tree
traversal library Acorn Walk. [2]Babel is originally a fork of Acorn, while Babel has since
had a full rewrite. Acorn focuses heavily on supporting third party plugins, which Babel
does not. However Acorn was not a good fit for this project, as Acorn only supports
Stage 4 proposals, and support for proposals in the early stages is a requirement.

38

Chapter 7

Future Work

Provide access and gather feedback. This project is build upon creating a tool for
users of EcmaScript to see new proposals within their own codebase. The idea behind
this is to use the users familiarity to showcase new syntactic proposals, and get valuable
feedback to the committee developing the ECMA-262 standard. This means making the
definitions of a proposal in JSTQL and this tool available to end-users to execute using
their own code. This can come in multiple forms, we suggest some ideas, such as a
playground on the web, an extension for Visual Studio Code, or to be used in github pull
requests.

Supporting other languages. The idea of showcasing changes to a programming
language by transforming user code is not only limited to EcmaScript, and could be
applied to many other programming languages using a similar developement method to
EcmaScript. The developers of a language could write definitions of new changes for their
respective language, and use a similar tool to the one discussed in this thesis to showcase
possible new changes.

Parameterized specifications. The current form of JSTQL supports writing each
template as its own respective case, but multiple templates might be very similar and
could be written using generics that are shared between case definitions. Introducing this
might give a simpler way of writing more complex definitions of a proposal transformation
by re-using generic type parameters for the wildcards used in the transformations.

Fully self-hosting JSTQL-SH . The current version of JSTQL-SH relies on this
tools parser to generate the AST for the type expressions used for matching by wildcards.
This might make this tool more difficult to adopt for the committee. Therefore adding
functionality for writing these type expressions purely in JavaScript and allowing for the
use of JavaScript as its own meta language is an interesting avenue to explore.

Support for custom proposal syntax. Currently this tool relies heavily on that a
proposal is supported by [2]Babel. This makes the tool quite limited in what proposals
could be defined and transformed due to relying on Babel for parsing the templates and

39

generating the output code. Introducing some way of defining new syntax for a proposal
in the proposal definition, and allowing for parsing JavaScript containing that specific
new syntax would limit the reliance on Babel, and allow for defining proposals earlier in
the development process. This can possibly be done by implementing a custom parser
inside this tool that allows defining custom syntax for specific new proposals.

40

Bibliography

[1] atom, May 2024. [Online; accessed 23. May 2024].

[2] Babel · Babel, May 2024. [Online; accessed 10. May 2024].

[3] @babel/generator · Babel, May 2024. [Online; accessed 12. May 2024].

[4] @babel/parser · Babel, May 2024. [Online; accessed 14. May 2024].

[5] @babel/traverse · Babel, May 2024. [Online; accessed 12. May 2024].

[6] Bikeshedding the Hack topic token · Issue #91 · tc39/proposal-pipeline-operator,
May 2024. [Online; accessed 24. May 2024].

[7] bootstrap, May 2024. [Online; accessed 23. May 2024].

[8] ECMAScript® 2025 Language Specification, May 2024. [Online; accessed 24. May
2024].

[9] ECMAScript® 2025 Language Specification, May 2024. [Online; accessed 24. May
2024].

[10] ECMAScript® 2025 Language Specification, May 2024. [Online; accessed 24. May
2024].

[11] ECMAScript® 2025 Language Specification, May 2024. [Online; accessed 25. May
2024].

[12] ECMAScript® 2025 Language Specification, April 2024. [Online; accessed 13. May
2024].

[13] Functions · The Julia Language, May 2024. [Online; accessed 24. May 2024].

[14] Langium, April 2024. [Online; accessed 10. May 2024].

[15] next.js, May 2024. [Online; accessed 23. May 2024].

[16] proposal-do-expressions, May 2024. [Online; accessed 2. May 2024].

[17] proposal-pipeline-operator, May 2024. [Online; accessed 21. May 2024].

[18] react, May 2024. [Online; accessed 23. May 2024].

41

[19] Rust-based platform for the Web – SWC, May 2024. [Online; accessed 21. May
2024].

[20] Structural search and replace | IntelliJ IDEA, April 2024. [Online; accessed 22. May
2024].

[21] The TC39 Process, April 2024. [Online; accessed 24. May 2024].

[22] three.js, May 2024. [Online; accessed 23. May 2024].

[23] Boyko B. Bantchev. Putting more meaning in expressions. SIGPLAN Not., 33(9):77–
83, September 1998.

[24] Matthew S. Davis. An object oriented approach to constructing recursive descent
parsers. SIGPLAN Not., 35(2):29–35, feb 2000.

[25] Martin Hirzel, Scott Schneider, and Kanat Tangwongsan. Sliding-Window Aggrega-
tion Algorithms: Tutorial. In DEBS ’17: Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems, pages 11–14. Association for
Computing Machinery, New York, NY, USA, June 2017.

[26] KathleenDollard. Symbol and Operator Reference - F#, May 2024. [Online; accessed
24. May 2024].

[27] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source code
evolution using abstract syntax tree matching. In Proceedings of the 2005 Interna-
tional Workshop on Mining Software Repositories, MSR ’05, page 1–5, New York,
NY, USA, 2005. Association for Computing Machinery.

[28] Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source code evo-
lution using abstract syntax tree matching. SIGSOFT Softw. Eng. Notes, 30(4):1–5,
may 2005.

[29] Apache NetBeans. Java Declarative Hints Language, March 2024. [Online; accessed
21. May 2024].

[30] Apache NetBeans. Welcome to Apache NetBeans, February 2024. [Online; accessed
21. May 2024].

[31] J. Palsberg and C.B. Jay. The essence of the visitor pattern. In Proceedings. The
Twenty-Second Annual International Computer Software and Applications Confer-
ence (Compsac ’98) (Cat. No.98CB 36241), pages 9–15, 1998.

[32] Raoul-Gabriel Urma and Alan Mycroft. Programming language evolution via source
code query languages. In Proceedings of the ACM 4th Annual Workshop on Eval-
uation and Usability of Programming Languages and Tools, PLATEAU ’12, page
35–38, New York, NY, USA, 2012. Association for Computing Machinery.

42

Appendix A

Generated code from Protocol buffers

1 export interface Identifier extends WildcardNode {
2 nodeType: "Identifier";
3 name: string;
4 }
5
6 export interface Wildcard {
7 nodeType: "Wildcard";
8 identifier: Identifier;
9 expr: TypeExpr;
10 star: boolean;
11 }
12
13 export interface WildcardNode {
14 nodeType: "BinaryExpr" | "UnaryExpr" | "GroupExpr" | "Identifier";
15 }
16
17 export type TypeExpr = BinaryExpr | UnaryExpr | PrimitiveExpr;
18
19 export type BinaryOperator = "||" | "&&";
20
21 export type UnaryOperator = "!";
22
23 export interface BinaryExpr extends WildcardNode {
24 nodeType: "BinaryExpr";
25 left: UnaryExpr | BinaryExpr | PrimitiveExpr;
26 op: BinaryOperator;
27 right: UnaryExpr | BinaryExpr | PrimitiveExpr;
28 }
29 export interface UnaryExpr extends WildcardNode {
30 nodeType: "UnaryExpr";
31 op: UnaryOperator;
32 expr: PrimitiveExpr;
33 }
34
35 export type PrimitiveExpr = GroupExpr | Identifier;
36
37 export interface GroupExpr extends WildcardNode {
38 nodeType: "GroupExpr";
39 expr: TypeExpr;
40 }

Listing A.1: TypesScript types of Type Expression AST

43

	Introduction
	Background
	Figures

	Background
	Proposals

	Collecting User Feedback for Syntactic Proposals
	The core idea
	Applying a proposal

	Applicable proposals
	Syntactic Proposals
	Simple example of a syntactic proposal
	Pipeline Proposal
	Do Expressions
	Await to Promise

	Searching user code for applicable snippets
	Structure of JSTQL
	JSTQL
	Transforming

	Using the JSTQL with syntactic proposals
	"Pipeline" Proposal
	"Do Expressions" Proposal
	Await to Promises evaluation proposal

	JSTQL-SH

	Implementation
	Architecture
	Parsing JSTQL using Langium
	Langium

	Pre-parsing
	Using Babel to parse
	Matching
	Transforming

	Evaluation
	Real Life source code

	Related Work
	Other JavaScript parsers

	Future Work
	Bibliography
	Generated code from Protocol buffers

