JSTQL-JS-Transform/src/matcher/matcher.ts

352 lines
12 KiB
TypeScript

import * as t from "@babel/types";
import * as babelparser from "@babel/parser";
import { TreeNode, makeTree, showTree } from "../data_structures/tree";
import { Wildcard } from "../parser/parse";
import generate from "@babel/generator";
import { WildcardEvalVisitor } from "./wildcardEvaluator";
const keys_to_ignore = ["loc", "start", "end", "type"];
export interface MatchedTreeNode {
aplToNode: TreeNode<t.Node>;
codeNode: TreeNode<t.Node>;
}
export interface PairedNodes {
aplToNode: t.Node;
codeNode: t.Node[];
}
export interface Match {
statements: TreeNode<PairedNodes>[];
}
enum MatchResult {
MatchedWithWildcard,
MatchedWithStarredWildcard,
Matched,
NoMatch,
}
export function runMatch(
code: TreeNode<t.Node>,
applicableTo: TreeNode<t.Node>,
internals: Wildcard[]
): Match[] {
// Special case for a single expression, we have to remove "ExpressionStatement" node.
if (applicableTo.children.length === 1) {
if (applicableTo.children[0].element.type === "ExpressionStatement") {
let matcher = new Matcher(
internals,
applicableTo.children[0].children[0].element
);
matcher.singleExprMatcher(
code,
applicableTo.children[0].children[0]
);
return matcher.matches;
} else {
let matcher = new Matcher(
internals,
applicableTo.children[0].element
);
matcher.singleExprMatcher(code, applicableTo.children[0]);
return matcher.matches;
}
} else {
let matcher = new Matcher(internals, applicableTo.element);
matcher.multiStatementMatcher(code, applicableTo);
return matcher.matches;
}
}
export class Matcher {
public matches: Match[];
private internals: Wildcard[];
private aplToFull: t.Node;
constructor(internals: Wildcard[], aplToFull: t.Node) {
this.matches = [];
this.internals = internals;
this.aplToFull = aplToFull;
}
singleExprMatcher(
code: TreeNode<t.Node>,
aplTo: TreeNode<t.Node>
): [TreeNode<PairedNodes> | undefined, MatchResult] {
// If we are at start of ApplicableTo, start a new search on each of the child nodes
if (aplTo.element === this.aplToFull) {
// Perform a new search on all child nodes before trying to verify current node
let temp = [];
// If any matches bubble up from child nodes, we have to store it
for (let code_child of code.children) {
let [maybeChildMatch, matchResult] = this.singleExprMatcher(
code_child,
aplTo
);
if (maybeChildMatch) {
temp.push(maybeChildMatch);
}
}
// Store all full matches
this.matches.push(
...temp.map((x) => {
return {
statements: [x],
};
})
);
}
// Check if the current matches
let curMatches = this.checkCodeNode(code.element, aplTo.element);
let pairedCurrent: TreeNode<PairedNodes> = new TreeNode(null, {
codeNode: [code.element],
aplToNode: aplTo.element,
});
if (curMatches === MatchResult.NoMatch) {
return [undefined, MatchResult.NoMatch];
} else if (
curMatches === MatchResult.MatchedWithWildcard ||
curMatches === MatchResult.MatchedWithStarredWildcard
) {
return [pairedCurrent, curMatches];
}
// At this point current does match
// Perform a search on each of the children of both AplTo and Code.
let i = 0;
let aplToi = 0;
while (aplToi < aplTo.children.length) {
if (i >= code.children.length) {
return [undefined, MatchResult.NoMatch];
}
let [pairedChild, childResult] = this.singleExprMatcher(
code.children[i],
aplTo.children[aplToi]
);
if (pairedChild === undefined) {
// Failed to get a full match, so early return here
return [undefined, MatchResult.NoMatch];
}
pairedChild.parent = pairedCurrent;
pairedCurrent.children.push(pairedChild);
if (childResult === MatchResult.MatchedWithStarredWildcard) {
i += 1;
while (i < code.children.length) {
let [maybeChild, starChildResult] = this.singleExprMatcher(
code.children[i],
aplTo.children[aplToi]
);
if (
starChildResult !=
MatchResult.MatchedWithStarredWildcard ||
maybeChild === undefined
) {
i -= 1;
break;
}
pairedChild.element.codeNode.push(
...maybeChild.element.codeNode
);
i += 1;
}
}
i += 1;
aplToi += 1;
}
if (i < code.children.length) {
return [undefined, MatchResult.NoMatch];
}
// If we are here, a full match has been found
return [pairedCurrent, curMatches];
}
private checkCodeNode(codeNode: t.Node, aplToNode: t.Node): MatchResult {
// First verify the internal DSL variables
if (
aplToNode.type === "ExpressionStatement" &&
aplToNode.expression.type === "Identifier"
) {
aplToNode = aplToNode.expression;
}
if (aplToNode.type === "Identifier") {
for (let wildcard of this.internals) {
if (aplToNode.name === wildcard.identifier.name) {
let visitorResult = WildcardEvalVisitor.visit(
wildcard.expr,
codeNode
);
if (visitorResult && wildcard.star) {
return MatchResult.MatchedWithStarredWildcard;
} else if (visitorResult) {
return MatchResult.MatchedWithWildcard;
}
}
}
}
if (codeNode.type != aplToNode.type) {
return MatchResult.NoMatch;
}
//If not an internal DSL variable, gotta verify that the identifier is the same
if (codeNode.type === "Identifier" && aplToNode.type === "Identifier") {
if (codeNode.name != aplToNode.name) {
return MatchResult.NoMatch;
}
}
for (let [key, val] of Object.entries(aplToNode)) {
if (keys_to_ignore.includes(key)) {
continue;
}
if (typeof val !== "object") {
if (codeNode[key] !== val) {
return MatchResult.NoMatch;
}
}
}
return MatchResult.Matched;
}
multiStatementMatcher(code: TreeNode<t.Node>, aplTo: TreeNode<t.Node>) {
if (
code.element.type === "Program" ||
code.element.type === "BlockStatement"
) {
this.matchMultiHead(code.children, aplTo.children);
}
for (let code_child of code.children) {
this.multiStatementMatcher(code_child, aplTo);
}
}
matchMultiHead(code: TreeNode<t.Node>[], aplTo: TreeNode<t.Node>[]) {
// Sliding window the size of aplTo
for (let y = 0; y <= code.length - aplTo.length; y++) {
let fullMatch = true;
let statements: TreeNode<PairedNodes>[] = [];
let aplToi = 0;
let codei = 0;
while (aplToi < aplTo.length && codei + y < code.length) {
let [paired, matchResult] = this.exactExprMatcher(
code[codei + y],
aplTo[aplToi]
);
if (!paired) {
fullMatch = false;
break;
}
if (matchResult === MatchResult.MatchedWithStarredWildcard) {
codei += 1;
while (codei + y < code.length) {
let [next, nextMatchRes] = this.exactExprMatcher(
code[codei + y],
aplTo[aplToi]
);
if (
!next ||
nextMatchRes !==
MatchResult.MatchedWithStarredWildcard
) {
codei -= 1;
break;
}
paired.element.codeNode.push(...next.element.codeNode);
codei += 1;
}
}
statements.push(paired);
aplToi += 1;
codei += 1;
}
if (aplToi !== aplTo.length) {
fullMatch = false;
}
if (fullMatch) {
this.matches.push({ statements });
}
}
}
exactExprMatcher(
code: TreeNode<t.Node>,
aplTo: TreeNode<t.Node>
): [TreeNode<PairedNodes> | undefined, MatchResult] {
let curMatches = this.checkCodeNode(code.element, aplTo.element);
if (curMatches === MatchResult.NoMatch) {
return [undefined, MatchResult.NoMatch];
}
let paired: TreeNode<PairedNodes> = new TreeNode(null, {
aplToNode: aplTo.element,
codeNode: [code.element],
});
if (
curMatches === MatchResult.MatchedWithStarredWildcard ||
curMatches === MatchResult.MatchedWithWildcard
) {
return [paired, curMatches];
}
let i = 0;
let aplToi = 0;
while (i < code.children.length && aplToi < aplTo.children.length) {
let [pairedChild, childResult] = this.exactExprMatcher(
code.children[i],
aplTo.children[aplToi]
);
if (!pairedChild) {
// If child is not match the entire thing is not a match;
return [undefined, MatchResult.NoMatch];
}
// This is a match, so we store it
pairedChild.parent = paired;
paired.children.push(pairedChild);
if (childResult === MatchResult.MatchedWithStarredWildcard) {
i += 1;
while (i < code.children.length) {
let [maybeChild, starChildResult] = this.singleExprMatcher(
code.children[i],
aplTo.children[aplToi]
);
if (
starChildResult !=
MatchResult.MatchedWithStarredWildcard ||
maybeChild === undefined
) {
i -= 1;
break;
}
pairedChild.element.codeNode.push(
...maybeChild.element.codeNode
);
i += 1;
}
}
i += 1;
aplToi += 1;
}
// Verify it is a full match
if (aplToi < aplTo.children.length) {
return [undefined, MatchResult.NoMatch];
}
if (i < code.children.length) {
return [undefined, MatchResult.NoMatch];
}
return [paired, curMatches];
}
}